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Abstract 

This report describes a framework for representing and validating formal proofs in various ax- 
iomatic systems. The framework is based on the Edinburgh Logical Framework (LF) but is op- 
timized for minimizing the size of proofs and the complexity of proof validation, by removing 
redundant representation components. Several variants of representation algorithms are presented 
with the resulting representations being a factor of 15 smaller than similar LF representations. 
The validation algorithm is a reconstruction algorithm that runs about 7 times faster than LF 
typechecking. We present a full proof of correctness of the reconstruction algorithm and hints for 
the efficient implementation using explicit substitutions. We conclude with a quantitative analysis 
of the algorithms. 
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1    Introduction 

The problem of theorem proving has received significant attention from the scientific community 
in the last 30 years, mostly as a critical component of program verification. The most often 
analyzed aspect of theorem proving has been the most challenging one, namely the efficiency and 
practicality of the proof search. Much less attention has been devoted to the problem of producing 
and manipulating the proofs of the proved theorems. 

A typical theorem prover provides a counterexample for each failed theorem but it does not 
emit a proof of the theorem in case of success. This means that users of such theorem provers 
are obligated to take on faith their soundness. This is a significant problem, because powerful 
theorem provers are complex systems, with very complicated invariants that are easy to break 
during implementation or maintenance. Furthermore, theorem prover bugs might persist for a long 
time because the user does not usually have a simple criterion to distinguish between theorems that 
should succeed and those that should not. Because of these reasons we believe that it is useful to 
instrument a theorem prover to emit a proof for every theorem that it proves. The proof should 
be detailed enough so that it can be checked by a very simple and easy-to-trust proof checker. 

Adding the proof-generating capability to a theorem prover not only makes it easier to verify 
and to maintain, but also enables its use as a front-end to a Proof-Carrying Code (PCC) [12] system 
for the safe execution of untrusted code. PCC is a protocol by which two software systems (say 
a code producer and a code consumer) can cooperate on the task of convincing the code consumer 
that a program supplied by the untrusted code producer is safe to run. The key element of the PCC 
technique is that the producer must supply together with the program a formal safety proof stating 
the the execution of the program does not violate the safety policy of the code consumer. Then the 
server can easily validate the safety proof before installing the untrusted code for execution. PCC 
has uses ranging from operating system kernel extensions to mobile code and safe inter-operation 
of components written in safe and unsafe languages [12. 13, 14]. In all of these situations, it is 
important to have compact representation of proofs because they are explicitly manipulated and 
possibly sent through communication networks. For the PCC technique to be practical it is also 
important to be able to validate the proofs quickly. 

The purpose of this report is to present efficient algorithms for the representation and validation 
of proofs. These algorithms were developed as part of our PCC implementation effort, which is 
currently based on first-order logic. Even though the algorithms are optimized and validated 
experimentally for first-order logic, they are usable for other logics as well. 

There are two main factors that have guided our choices for a proof representation algorithm: 
generality and the ability to handle higher-order representation. Each of these factors are motivated 
below. 

The first impulse in designing an efficient proof representation and validation algorithms is to 
specialize them to a given logic. For example, we might define the representation and validation 
algorithm by cases, with one case for each inference rule in the logic. This approach has the major 
disadvantage that a new representation and validation algorithm has to be designed and imple- 
mented for each logic. We would prefer instead to use general algorithms that are parameterized 
by the particular logic of interest. 

A simplistic view of a proof is as a tree, whose leaves represent uses of axioms and whose 
internal node represent uses of inference rules. If we label each node with the predicate proved 
by the subtree rooted at that node we can then check the validity of the proof by verifying that 
each node is a valid instance of an inference rule. Unfortunately, this is not quite enough for a 
large class of logics that have parametric and hypothetical judgments. For example, the implication 



introduction rule of first-order logic specifies that the left-hand side of the implication can be used 
as an assumption but only in the subtree that proves the right-hand side. This side-condition can 
be expressed naturally using a binding proof constructor that binds the assumption of the left-hand 
side in the proof of the right-hand side. 

To achieve both the generality and the higher-order representation goals we use the Edinburgh 
Logical Framework (LF) [5] introduced by Harper, Honsell and Plotkin as a general framework for 
defining logics. LF is general in the sense that implementation of validation and representation is 
parameterized by the logic of interest. Section 3 presents the logical framework and how it can be 
used to validate proofs. 

The major drawback of representing proofs in LF is that, in general, the representations are 
unnecessarily large and difficult to check because of many redundant components. To address this 
problem we introduce in Section 5 the framework LFj, a variant of LF that can deal with represen- 
tations whore redundant components have been erased. We present in Sections 5 and 6 a validation 
algorithm for LF, and then in Section 7 several algorithms that transform a LF representation to 
the LF7 implicit representation. 

The adequacy of representing logical derivation in LF is proved in [5]. In Section 8 we redo 
the proofs for the LF, representations. This section is very technical and can be skipped on the 
first reading. The proof of correctness motivates the design of the reconstruction and validation 
algorithms and exposes opportunities for optimizations. A basic understanding of this section is 
required for writing a good implementation of the representation and validation algorithms and 
also for understanding of the optimizations presented in Section 9. 

In Sections 9 and 10 we consider practical aspects related to the concrete implementation of the 
representation and validation algorithms. The implementation is based on explicit substitutions to 
minimize the time and space required for proof validation. 

Finally, in Section 11 we show quantitative comparisons between the LF and LFj sizes of 
representations and speed of validation algorithms. The performance results can be summarized by 
saying that the implicit representation is on the average 15 times smaller than the LF representation 
and validating it is on the average 7 times faster. Moreover these improvements seem to increase 
for larger problems, reaching factor of 44 for the size and 18 for the time, for the largest PCC 
experiments to date. Following these performance results we evaluate the various optimizations 
presented in Section 9, showing that they roughly halve the space and time requirements of LFj 
proof validation. 



2    A First-Order Predicate Logic C 

For illustration purposes we introduce in this section a fragment of the first-order predicate logic. 
In the rest of this paper we will refer to this logic as C The syntactic elements of C are grouped 
in two levels: expressions and predicates. The language of expressions includes integer variables, 
literals, addition and subtraction: 

e    ::=   x   \   n   \   e\ + e2    \   e\ — e2 

The language of predicates is essentially a fragment of first-order predicate logic that includes 
the predicate true, conjunction, implication, universal quantification and expression equality: 

P   ::=   true   |   Pi A P2   |   Pi D P2   |   Vz.P   |   ex = e2 

This subset of first-order predicate logic is sufficient for our purposes. However the logic can 
be extended in two ways. One is to allow other boolean connectives such as negation, disjunction 
and existential quantification. The other opportunity for extension is to add new function symbols 
at the level of expressions and predicates. Such extensions of C can be expressed in the framework 
presented in the rest of this report by treating new expression and predicate constructors following 
the model of constructors already existent in £. 

2.1    The Proof System 

The proof system of C is the collection of axioms and inference rules that define the valid deriva- 
tions. Not surprisingly the proof system is composed of two orthogonal components. The first 
component contains the first-order predicate logic rules and the other gives an interpretation to 
integer arithmetic functions. We write > P when the predicate P can be proved using the proof 
rules in C. 

Figure 1 shows the inference rules of first-order predicate logic from C. In an extended logic, 
negation, disjunction and existential quantification rules must be added. 

>truetrue-1 
>Pl         >P2andi     >PiAP2 

> Pi A P2     
and-1          > Pi 

-and_el         ^5——and_er 
> P2 

>P1
U 

V 

\u \v 

>P2 .u      > Pi D P2          > Pi  .       . j" ^ —UMDI e ^/^allF     >V*^all_e 
> [e/x]P 

Figure 1: Fragment of the first-order predicate logic proof rules. 

The choice of axioms for dealing with integer arithmetic is a delicate one. We do not attempt 
here to have a complete logic but one that is suitable for illustrating the proof representation and 
validation framework presented in the rest of this report. Soundness of the logic is also not crucial 
for our purposes, but is a desirable feature. Figure 2 shows our choice of arithmetic axioms. 

As an example of a derivation in C consider the proof of P = Vei.Ve2.Ve3.(ei = e2 + 63) D 
(ei — es — e2). The derivation V of the predicate P is shown in tree form in Figure 3. We will 
return to this derivation in the following sections to exemplify the various proof representations 
and the behavior of corresponding validation algorithms. 



. ,     [> E2 = E\ > E\ = Eo        > E2 = .£3     , 
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>E = E~ >Ei = Ek       * >E1=ES 

id    —5=i—r-pi pi—m—hcom    —p; pi n+inv 
>E + 0 = E^1"    > £1 + £2 = #2 + #i »E-E = 0 

>Ej = E2 >E[=E'2 t>E1=E2 >E[=E'2 

> Ex + E[ = E2 + E'2     
+conSr t>E1-E[ = E2-E'2     "

C°ngr 

-assoc    —T= =—r == = T= =-7+-assoc 
> {Ex + E2) + E3 = E1 + (E2 + £3) > (£1 + £2) - #3 = -Ei + (#2 - Ez) 

Figure 2: Arithmetic proof rules. 

>ei=e2 + e3
u oe3 = e3 —

ld £>" 
congr 

> ei - e3 = (e2 + e3) - e3 > (e2 + e3) - e3 = e2 

> ei — e3 = e2 .      , .„ =tr 

> ei = e2 + e3 D ex - e3 = e2 all_ie3 

> Ve3. ei = e2 + e3 D et - e3 = e2 anje9 
25  = > Ve2.Ve3. ex = e2 + e3 D ei - e3 = e2        anjei 

> Vei.Ve2.Ve3. ei = e2 + e3 D ei - e3 = e2 

 =id  n+mv > e2 = e2    1U > e3 - e3 = 0   . , . ,  ± ^ ^ hconsrr \-\<± 
> e2 + (e3 - e3) = e2 + 0               6     > e2 + 0 = e2 ^ 

-assoc  —7 r =tr 
vu _   > (e2 + e3) - e3 = e2 + (e3 - e3) > e2 + (e3 - e3) = e2 _tr 

1 ~~ > (e2 + e3) - e3 = e2 

Figure 3: The derivation V of Vei.Ve2.Ve3.(ei = e2 + e3) D (ei - e3 = e2) in £. For typographical 
reasons the subderivation Vf is shown as a separate tree. 



3    The Edinburgh Logical Framework 

The Edinburgh Logical Framework (also referred to as LF) has been introduced by Harper, Honsell 
and Plotkin [5] as a metalanguage for high-level specification of logics. LF provides natural support 
for the management of binding operators, hypothetical and schematic judgments. For example it 
captures the convention that expressions that differ only in the names of bound variables are 
considered identical. Similarly, it allows direct expression of contexts and variable lookup as they 
arise in a hypothetical and parametrical judgment. The fact that these techniques are supported 
by the logical framework is a crucial factor for the succinct formalization of proofs. 

The LF representation of a logic consists of two stages. The first stage; is the representation of 
the abstract syntax of the logic under investigation. For example?, we will show how to represent 
expressions and predicates of L in LF. The second stage is the representation of the semantics of 
L. We do this by representing in LF the proof rules set C. Then we show how actual proofs can 
be constructed from instances of proof rules. 

The LF type theory is a language with entities of three levels: objects, types and kinds. Types 
are used to qualify objects and similarly, kinds are used to qualify types. The abstract syntax of 
these entities is shown below: 

Kinds K 
Types A 
Objects   M 

:=   Type   |   Ux:A.K 
:=   a   |   AM   \   Ux:Ai.A-2 

:=   x   |   c   |   MjM2    |   Xx:A.M 

Here Type is the base kind, a is a type constant and c is an object constant. 
We represent our logic in LF by means of a signature £ that assigns types to a set of constants 

describing the syntax of expressions and predicates, and the proof rules of our logic. Then we define 
a representation function that will map expressions, predicates and their proofs in our logic to LF 
objects constructed with constants declared in the signature E. 

The main representation strategy in LF is that judgments (e.g., statements about the validity 
of predicates) are represented as LF types and judgment derivations (e.g. a proof of a predicate) 
are represented as objects whose type is the representation of the judgments they prove. Type 
checking in the LF type discipline can then be used to check the validity of logic proofs. 

We start now to present the signature S corresponding to the logic C. 

3.1    Representing Abstract Syntax: Expressions and Predicates 

First, we define in Figure 4 the LF types exp of expressions and pred of predicates. All of these 
are atomic LF types of base kind Type. 

exp      :    Type 
pred    :    Type 

Figure 4: the LF signature S (part 1). Base type constants. 

Then for each expression and predicate constructor we define an LF constant as shown in 
Figure 5. One of the most interesting cases is the universal quantification. Care must be taken 
when dealing with universal quantification because of the presence of bound variables. For example, 
we must ensure that the representation captures the fact that the bound variable is local to the body 
of the quantification and that two expressions differing only in the name of the bound variables are 



equal. Moreover, when an expression is substituted for the bound variable we must ensure that no 
free variable of the substituted expression is captured. 

One of the main reasons we chose LF as a proof representation language is that it provides 
mechanisms for dealing with bound variables. Note in Figure 5 how the universal quantification is 
represented as a higher-order construct by representing the bound logical variable by a bound LF 
variable. This effectively delegates all the tedious manipulations of bound variables to LF. 

0 
+ 

<> 
true 

and 

impl 

all 

exp 

exp —>■ exp —> exp 
exp —>■ exp —> exp 
exp —> exp —> pred 
exp —>■ exp —> pred 

pred 

pred —> pred —»■ pred 
pred -> pred —>• pred 

(exp —> pred) —> pred 

Figure 5: The LF signature £ (part 2). Expression and predicate constructors. 

The LF representation function r-n is defined inductively on the structure of expressions, types 
and predicates as shown in Figures 6 and 7. 

rzn  = X 
rei + e2

n   = + rer re2
n 

r
ei-e2^   = - rer re2

n 

Figure 6: LF representation (part 1). Expressions. 

rei = e2
n = = rein re2-" 

rei ^ e2^ = <> re1~
[ re2~l 

rtruen = true 
rPAi?n = and rPn ri?n 

rPDR~1 = impl rp-] rRn 

rVs.P"1 = all (Xx:exp.rP'1 

Figure 7: LF representation (part 2). Types and predicates. 

3.2    Representing Semantics: Proofs 

Up to this point we have defined the representation of expressions, types and predicates in LF. 
Our ultimate goal is to be able to represent proofs of predicates or equivalently derivations of the 
validity of predicates. We follow the same pattern as for syntactic constructs and we introduce 
a type of proofs pf and then define each proof rule as an LF constant of this type. Things are 
actually more involved due to the fact that we want the type of a proof to determine the predicate 
that is being proved. In this way we verify by type checking not only that a proof is valid but also 



true_i 
ancLi 
and_el 
and_er 
impl_i 
impl_e 
all-i 
all_e 

pf true 
np:pred.H>:pred.pf p ->• pf r —> pf (andp r) 
np:pred.ITr:pred.pf (andp r) —>• pf p 
np:pred.ür:pred.pf (andp r) -> pf r 
np:pred.IIr:pred.(pf p ->■ pf r) —)■ pf (implp r) 
nprpred.IIr :pred.pf (impl p r) —)■ pf p —>• pf r 
Up:exp —>■ pred.(Ih;:exp.pf (pt))) -> pf (all p) 
IIp:exp —>■ pred.IIe:exp.pf (all p) -» pf (p e) 

Figure 8: The LF signature E (part 3). First-order logic proof constants (see Figure 1). 

= id 
= sym 
= tr 
+ id 
-I-com 
+ inv 
+congr 

—congr 

+assoc 
H— assoc 

->• pf (= ei e3) 

üe:exp.pf (= e e) 
Ilei :exp.üe2:exp.pf (= e2 e\) -> pf (= ei 02) 
Ilei :exp.ne2:exp.rie3:exp.pf (= ei e2) —>• pf (= e2 63) 
Ile:exp.pf (= (+ e 0) e) 
nei:exp.üe2:exp.pf (= (+ ei e2) (+ e2 ei)) 
Ilerexp.pf (= (— e e) 0) 
Ilei: exp.Ile2: exp.IIei : exp.IIe2: exp. 
pf (= ei e2) -> pf (= ei e'2) -> pf (= (+ ex e[) (+ e2 e2)) 
Ilei: exp.IIe2: exp.Ilei : exP-ne2: exp. 
pf (= ei e2) ->■ pf (= ei e'2) ->• pf (= (- ex e[) (- e2 e2)) 
nei:exp.ne2:exp.ne3:exp.pf (- (+ (+ e\ e2) e3) (+ ex (+ e2 e3))) 
ne1:exp.ne2:exp.rie3:exp.pf (= (- (+ ex e2) e3) (+ ei (- e2 e3))) 

Figure 9: The LF signature E (part 4). Application-specific proof constants (see Figure 2). 

that it. proves the desired predicate. This is possible to express in the LF type discipline by using 
type families indexed by terms. 

Thus pf  is actually a type family indexed by LF representation of predicates: 

pf     :   pred —>■ Type 

Following the model of expressions and predicates we add to the signature E a constant for each 
proof rule in C. The constants corresponding to the proof rules used by our example are shown in 
Figure 8 (first-order logic proof rules) and Figure 9 (arithmetic proof rules). 

We then extend the representation function r-n to derivations. When doing so care must 
be taken with hypothetical and schematic judgments, such as the implication introduction and 
the universal quantification introduction rules. We show in Figure 11 the representation of the 
introduction rules for conjunction, implication and universal quantification. The representation of 
the conjunction introduction is typical for all other rules not shown here, including the arithmetic 
proof rules. 

The implication introduction rule introduces the hypothesis labelled u for the purpose of deriving 
P2. Checking an instance of this rule schema involves verifying that it discharges properly the 
hypothesis u. Equivalently, the derivation Vu must be hypothetical in u. This is expressed naturally 
in LF by representing the hypothesis as a variable bound in the derivation Vu. Finally, the LF 
representation of our logic contains also the representation of the application-specific proof rules. 
Their representation is straightforward because they do not involve hypothetical judgments. As an 
example we show below the LF representation of the symmetry rule for equality:. 

9 



r -\ 
V 

> e2 = ei 
> ei = e2 = = _sym rein re2n r£> 

Figure 10: LF representation (part 4). Fragment of the application-specific rule representation (see 
Figure 2). 

r i 

Z>1 2?2 

> Pi > P2 
> Pi A P2 

~i 

= and_i rP1
nrP2

n r2?r r2V 

»P ■u 

2} ■u 

^p%p-« = impl-i rPn rPin (A«:pf ■"Pr-T»'' 

r "i 

vv 

VV^P?   
= a11^ (A2;:exP-r^n) (A^exp.-P"-) 

Figure 11: LF representation (part 3). Fragment of the first-order logic rule representation (see 
Figure 1). 

As an example of a proof representation in LF we show in Figure 12 the representation of the 
proof V from Figure 3 of the predicate Vei.Ve2.Ve3.(ei = e2 + 63) D {e\ — e^ = 02). The LF 
representation of the proof is computed as rVn from the representation in tree form. Compare this 
LF representation to the proof in tree form as shown in Figure 3. The only difference is the syntax 
used to express the proof and it seems obvious how one could reconstruct the tree form of the proof 
from the LF representation. 

In the next section we show a simple algorithm that can be used to validate proof representa- 
tions. The algorithm is parameterized by the signature S and therefore can be reused for checking 
validity of derivations in other logics just by changing the LF representation signature. 

4    Type Checking in the LF Type System 

One of the advantages of using LF for proof representation is that proof validity can be determined 
by a simple type-checking algorithm. That is, to check that the LF object M is the representation 
of a valid proof of the predicate P we use the LF typing rules (to be presented below) to verify 
that M has type pf rPn in the context of the signature S defining the valid proof rules. 

In order to define the typing rules we must formalize the syntax of signatures and we also 
introduce typing contexts that assign types to free variables: 

E    ::=    •    I   H,a:K   |   E, c:A   Signatures 
T    ::=    •    I   T,x:A Contexts 

10 



We define the typing judgment for LF objects in terms of three additional judgments as shown 
below: 

YF M : A   M is a valid object of type A 
Y F A : K    A is a valid type of kind K 
A=ß B Ais /3-equivalent to B 
M =ß N       M is /3-equivalent to N 

The complete LF type-system defines also a typing judgment for kinds. We omit this judgment 
here because, for the purpose of checking the validity of proofs, kinds can be assumed to be well- 
typed. In particular the only kinds relevant to checking proofs are the base kind and the kinds 
associated with the type-constants in the signature E, all of which can be trusted to be well-typed. 
For the signature corresponding to the logic C these kinds are Type and pred —>■ Type, which are 
obviously well-typed. 

We show in Table 1 the definition of the judgments introduced above. For the /^-equivalence 
judgment we omit the rules that define it to be an equivalence and a congruence. 

Types : 

,LF X{a)=K     YF A:ILx:B.K Y F M : B     Y F A : Type T,x : A F B : Type 
YFa:K YF AM :[M/X]K Y F UX:A.B : Type 

Objects : 

Y.(c) = A       Y(x) = A Y,X:AFM:B 

YFC:A      YFX:A     Y F XX:A.M :UX:A.B 

YF M :Ux:A.B Y F N : A       Y F M : A A=ßB 

Y F MN : [N/x]B Y F M : B 

Equivalence 

{Xx:A.M)N=ß [N/x]M 

Table 1: Type checking in the LF type discipline 

The following theorems can be proven using techniques which are similar to those used in [5, 13]. 
These theorems establish that LF type-checking is an adequate procedure for checking the validity 
of LF representations of proofs in C As mentioned before, the adequacy of LF type-checking holds 
even if C is extended with additional boolean connectives and function symbols. The adequacy 
holds even for higher-order logics [5]. 

Theorem 4.1 (Adequacy of Expression Representation.) 

1. If e has free variables among x\,..., xn, then x\ : exp,..., xn : exp h   ren : exp. 

2. If M is an LF object such that x\ : exp,... ,xn : exp F M : exp, then exists an expression e 
with free variables among x\,... ,xn such that re~1 =8 M. 

Theorem 4.2 (Adequacy of Predicate Representation.) 

iLF 1. If P has free variables among x\,...,xn, then x\ : exp,... ,xn : exp h  rP~1 : pred. 

11 



2. If M is an LF object such that X\ : exp,... ,xn : exp h M : pred, then there exists a predicate 
P with free variables among x\,... ,xn such that rPn =ß M. 

Theorem 4.3 (Adequacy of Derivation Representation.) 

1. If V :: o V is a derivation of P with parameters vi (i = l,...,n) and from hypotheses 
uj :: > Pj (j = l,...,m) then v{ : exp, UJ : pf rPjn F rX>n : pf rPn. 

2. If M is an LF object such that v% : exp, Uj : pf rPj~l f^ M : pf rPn, then there exists a 
derivation T> :: > V of P with parameters V{ (i = l,...,n) and from hypotheses Uj :: > Pj 
(j = 1,..., m) such that rV~] =ß M. 

Tlic reason for the asymmetry in the statement of the adequacy theorems above is that while the 
representation of an expression, predicate or derivation is always a well-typed LF object (point 1 in 
the theorems above) not every well-typed LF object is the representation of an expression, predicate 
or derivation even though it has the appropriate type. The reason is that the LF representation 
function only produces objects that do not contain /?-redices (canonical objects). In fact the 
adequacy proofs in [5, 13] introduce first the notion of canonical LF objects and then prove that r-n 

is a hijective function. Those results can be used to obtain proofs of the above adequacy theorems 
by introducing a normalization judgment that can be shown to preserve /3-equivalence. 

12 



all_i  (Aei   :   exp. 
all  (Ae2   :   exp. 

all   (Ae3   :   exp. 

=>  (= ei(+ e2 e3)) 
(=  (- ex e3) e2)))) 

(Aei   :  exp 
all_i  (Afj_>   :   exp. 

all   (Ae3   :   exp. 
=>  (= ei(+ e2 e3)) 

(=  (- ei e3)  e2))) 
(Af2   :   exp 

all_i   (Ae3   :   exp. 
=>  (= ei(+ e2 e3)) 

(= (- ei e3) e2)) 
(Ae3   :   exp 

(impl.i (= ei(+ e2 e3)) 
(= (- ei  e3) e2) 

(AM  :  pf  (= ei(+ e2 e3)). 
(=tr  (- ei  e3) 

(-  (+ e2 e3) e3) 

(-congr ei 
(+ e2 e3) 

e3 

e3 

u 
(=id e3)) 

(=tr (-  (+ e2 e3)  e3) 
(+ e2   (- e3 e3)) 

e2 

(+-assoc e2 

e-z 
e3) 

(=tr  (+ e2   (- e3 e3)) 
(+ e2 0) 
e2 

(+congr e2 

e2 

(- e3 e3) 
0 
(=id e2) 
(+inv e3)) 

(+id e2))))))))) 

Figure 12: LF representation of the proof shown in Figure 3. 
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5    The Implicit LF Representation 

The LF representation and type-checking algorithm presented in the previous section are adequate 
for the representation and validation of proofs. However the proof representations are unnecessarily 
large. This is apparent in the proof representation of Figure 12, where, for example, the expression 
e<i occurs 23 times, and it becomes even more pronounced in larger examples. The redundancy 
in the LF representation is no larger than the redundancy in the original proof of Figure 3, but 
nevertheless we would prefer to manipulate smaller proofs. 

The size of proofs, in general, is an important factor in any application that manipulates proofs 
explicitly, but the redundancy of representation in particular, has important consequences for 
the efficiency of proof checking. Consider an instance of a Proof-Carrying Code where the code 
consumer desires to check that the untrusted safety proof (for example, the one from Figure 12) 
enclosed with the code proves a certain predicate. In such a situation every subterm of the proof 
representation must be type-checked. This means that each of the 23 occurrences of the LF term e2 
must be type-checked separately. Moreover, following each of the type-checking operations the term 
must be compared with the instance of itself contained in the predicate to be proven, to ensure that 
every subderivation proves the desired predicate. Therefore the redundancy in the representation 
increases the amount of required checks and therefore can lead to inefficient proof validation. 

We address the problem of proof size at its source. We eliminate the redundancy in the repre- 
sentation by omitting redundant copies and maintaining only one copy. It is a good idea to try to 
preserve only the copy contained in the proved predicate, if such a copy exists. This is motivated 
by the fact that the proved predicate, and all of its subterms, can be trusted to be well-formed. 

During type-checking we reconstruct the missing copies from the subterms of the proven predi- 
cate. This addresses not only the proof size problem but also reduces drastically the effort involved 
in proof validation. The reason is that the reconstruction algorithm is designed so that whenever a 
missing copy of a subterm is reconstructed we know that the resulting term is well-typed, without 
having to typecheck it. Similarly the equivalence check does not normally have to be performed 
because of the properties of reconstruction. 

The algorithm that we present in this section is able to analyze the term shown in Figure 13 
and check that it represents the implicit form of a valid proof of the predicate shown in Figure 3. 
Compare this implicit representation with the full LF representation of a proof of the same predicate 
shown in Figure 12. 

Before we plunge into the formal details of the type reconstruction we show how the algorithm 
works on a simple example. For the purpose of this example consider a new kind of object, called a 
placeholder, written as * and marking a missing LF object. Consider now the proof of the predicate 
P D P A P. If we apply the LF representation algorithm presented in the previous section, we 
obtain: 

impl-i rPn (and rPn rP']) (A«:pf rPn.and_i rPn rPn u u) (1) 

The redundancy of the representation is manifested through the presence of 6 copies of the term 
rP"1, which can be a sizeable term in general. It is easy to check the type of the representation 
above to be pf (impl rPn (and rPn rPn)). We are going to replace all occurrences of rPn in the 
representation of the proof by placeholders and then show how type-reconstruction works for the 
resulting object. 

The implicit representation of the considered proof is: 

impl_i *i *2 (Au:*3.and_i *4 *5 u u) (2) 
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all_i * 
(Aei   :  * 

all_i * 
(Ae2   :  * 

all_i * 
(Ae3   :   * 

(impl_i * * 
(Alt   :   *. 

(=tr * * * 
(-congr *  *  *  * 

v 
(=id *)) 

(=tr * * * 
(+-assoc *  *  *) 
(=tr *  *  * 

(+congr *  *  * * 
(=id *) 
(+inv *)) 

(+id *))))))))) 

Figure 13: Implicit LF representation of the proof shown in Figure 3. 

where *j are 5 placeholders, which are labelled for demonstration purposes. We claim that the 
above LF term captures the essence of the proof. The remaining parts of the proof representation 
can be recovered while verifying that the the term has type pf (impl rP~1 (and rP"1 rPn)). 

Typechecking starts by recognizing the top-level constructor impl_i. The type of the entire 
term, pf (impl rPn (and rPn rPn)), is "matched'" against the result type of the impl_i constant, 
as given by the signature E. The result of this matching is an instantiation for placeholders 1 and 
2 and a residual type-checking constraint for the explicit argument of impl_i: 

*i =    rPn 

*2 =    and rPn rPn 

h    (Au:*3.and_i *4 *5 u u)     :    pf rP~1 -> pf (and rP~> rPn) 

Now we continue with the remaining type-checking constraint. From its desired type we imme- 
diately obtain the value of placeholder 3 and a typing constraint for the body: 

*3 =   pfrPn 

u : pf rPn h   and_i *4 *5 u u     :     pf (and rPn rPn) 

Now we notice that and_i is the top-level constant and by matching its result type declared in 
the signature with the goal type we get the instantiation for placeholders 4 and 5 and two residual 
typing constraints: 

*4  =  rPn 

*5 =     rPn 

u : pf rPn h u      :     pf rPn 

u : pf rP"1 h u  :  pf rPn 

The remaining two typechecking constraints are solved by the variable typechecking rule, and 
this concludes typechecking the entire proof. We reconstructed the full representation of the proof 
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by instantiating all the placeholders with well-typed LF objects. We know that these instantiations 
are well-typed because they are ultimately extracted from the original constraint type, which is 
assumed to contain only well-typed subterms. 

Starting with the next section we define a type-system, called LFj, which is very similar to the 
LF type-system but allows for placeholders. However, the LFj type-system is not very useful for 
typechecking or type reconstruction. For this purpose we describe in Section 6 a reconstruction 
algorithm for LF,. 

5.1    The LF, Type-System 

We extend the syntax of LF objects with placeholders, written *. An object is fully reconstructed, 
or fully explicit, when it is placeholder-free. We write PF(M) to denote this property. We extend 
this notation to type environments and we write PF(r) to denote that all the types assigned in T to 
variables are placeholder-free. We also introduce the implicitly typed abstraction, written Xx.M, 
at the level of objects. 

We call the resulting system of terms and types implicit LF and we refer to it by LFj. The 
typing rules of LF, are an extension of the LF typing rules with two new typing rules for dealing 
with implicit abstraction and placeholders, and one new /3-equivalence rule dealing with implicit 
abstraction. These additions are shown in Figure 14. The LFj typing judgment is written F f M : 
A. 

Objects : 

E(c) = A       F{x) = A       Ff M : A        A=ßB PF(A) 
T^c:^        F^xiA F ^ M : B 

F,x:AfM:B F,x:AfMrB 

F f- Xx.M: Fix :A.B     F f- Xx: AM : Fix: A.B 

Ff- M : Fix: A.B F f N : A PF(A)        F f M : Fix: A.B F f N : A PF(A) 

F f- M N : [N/x]B F f- M * : [N/x]B 

Equivalence : 

{Xx:A.M)N =ß [N/x)M     (Xx.M)N =ß [N/x]M 

Figure 14: The LFj type-system as an extension of LF. 

Note that according to the LFj type-system placeholders cannot occur on a function position. 
This restriction is consistent with the previous example and is essential for the correctness of the 
reconstruction algorithm. Also note that we restrict the types to be placeholder-free in several 
rules. This restriction simplifies greatly the proofs of soundness and does not seem to get in the 
way when validating implicit representation of proofs. 

A quick analysis of the LFj type-system reveals that it is not very useful for type-checking or 
type-inference. The main reason is that typechecking an application involves "guessing" appropriate 
A and N. The type A can sometimes be recovered from the type of the application head, but the 
term N in an application to a placeholder cannot be found easily in general. This is not a problem 
for us because we are going to use the LFj type-system just as a step in proving the correctness 
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of the type-reconstruction algorithm presented in the next section, and not as the basis for an 
implementation of a typechecking algorithm. 

The only property of interest of the LF; type-system is that once we have a typing derivation 
we can reconstruct the object involved and a corresponding LF typing-derivation. To make this 
more precise we introduce the notation M /- M' to denote that M' is a fully-reconstructed version 
of the implicit object M (i.e., PF(M')). This means that all the placeholders in M have been 
replaced by fully-explicit LF objects and similarly all the implicit abstractions have been replaced 
by explicit abstractions. Note that the reconstruction relation is not a function as there might be 
many reconstructions of a given implicit object or type. 

Theorem 5.1 Soundness of LF; typing IfTfM-.Aand PF{T), PF{A), then there exists M' 
such that M / M' and T F M': A. 

The proof of Theorem 5.1 is shown in Section 8.6. 
To give an example of a situation where Theorem 5.1 is used consider that we have constructed— 

using the algorithm presented in the next section for example—a typing derivation • \r M : pf rP~[ 

for some predicate P and a term M possibly containing placeholders. Then Theorem 5.1 says 
that there exists an LF term M' such that • P M' : pf rP~], or equivalently that there exists a 
proof of the predicate P. Theorem 5.1 reduces the problem of checking a proof to finding a LF; 
typing-derivation for the implicit proof-representation M. 

6    An Algorithm for LFj Type Reconstruction 

The LF; type-system presented in the previous section has the benefit that can deal with implicit 
LF terms. However this type-system does not immediately suggest a type-checking algorithm, as 
explained before. We show in this section an algorithm that can be used to typecheck LF; terms, 
or more precisely to reconstruct and typecheck LF; terms. 

We start with introducing some notation and then we present the algorithm at an abstract 
level, in terms of inference rules, and we deal with actual implementation issues in Section 10. 

6.1    Notation 

In addition to the placeholder constants introduced in the previous section we introduce a new brand 
of variables. These variables play similar role to that of placeholders in that they stand for missing 
terms. We shall use the letters x and y to denote traditional LF variables and the letter u to denote 
a placeholder variable. Also, we use the letter A to denote a type environment containing only type 
assignments for placeholder variables. The letter Y will denote type environments containing any 
kind of variables. In the special case when an LF object M does not contain placeholder variables 
we write PVF(M). Note that placeholder variables always occur free. 

We extend this notation and we write PVF(r(FV(M))) to mean that the types associated by 
T to the free variables of M do not contain placeholder variables. 

The main operation on placeholder variables is substitution with LF terms. We define the 
syntactic class of substitutions * as follows: 

*    ::=    •    |   u 4- M   Substitutions 

We denote by \I>(M) the term obtained by performing the substitution \& on M. We write 
Dom(ty) to refer to the set of placeholder variables on which \I/ is defined. We write PF(\I>) to 
mean that all the terms substituted for placeholder variables are placeholder-free. 
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We write ty\s to denote the substitution obtained from * by restricting it to the set of place- 
holder variables S. 

One of the key operations performed by the reconstruction algorithm is to compute substitutions 
through unification of terms or types. For a more precise presentation we use two flavors of 
unification shown below as unification of terms. The same notation is used for expressing unification 
of types. 

M «a M' => *   Atomic Unification 
M « M' =>$     Unification 

The last syntactic construct that we introduce is a list of type reconstruction constraints defined 
as follows: 

C   ::=    •    |   C,M:A   |    C, A «a B 

The reconstruction algorithm is described by the two unification judgments introduced above 
and three additional mutually recursive judgments shown below: 

rFM:i=^$ Main reconstruction judgment 
rFM=>(A;C;5)   Collect constraints 
rF(7=^$ Solve constraints 

We continue now with the definition of the five judgments introduced above. The collection of 
these inference rules constitute an abstract description of the reconstruction algorithm. 

6.2    Collecting Typechecking Constraints : T F M => (A ; C ; B) 

This judgment is used for atomic objects M, which are constants or variables applied to zero or 
more canonical objects. A canonical object is a sequence of abstractions with an atomic body. The 
object M is scanned to find the application head, whose type is read from the signature £ or from 
the variable type environment V. Then all arguments are collected in the residual type constraint 
list C together with their type. Placeholder variables are introduced for each placeholder arguments 
and are collected in A with their type. The resulting type B is the type of the whole application 
and might contain placeholder variables from A. Similarly, the types in the constraint list C might 
contain placeholders variables from A. Note that no placeholders can occur in types because of the 
side-condition on the rule pertaining to the application to a placeholder. 

rFc=J>(.;-;E(c))    r P z =>(•;•; r(s)) 

r F M =» (A ; C ■ Ux-.A.B) x 6 FV(ff) D (PF(AQ and PVF(A) and PVF(r(FV(7V)))) 
TfMN^{A;C,N:A; [N/x]B) 

TfM=^(A;C;Ux:A.B) . .... ... 
„ ,r ,, 7-1———;—7z—r—TTTTT u is a new placeholder variable 
TfM*^-(A,u:A;C; [u/x]B) v 

In the next section we describe how the list of constraints is solved. The main reason we sep- 
arate the tasks of collecting constraints and solving them is to allow an arbitrary order in solving 
the constraints. We discovered that this can greatly increase the effectiveness of the reconstruc- 
tion algorithm, with the benefit that proof representations can be made smaller by making more 
subterms implicit. 
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The restriction in the explicit application rule ensures that the resulting type [N/x]B does not 
have placeholders, provided that B does not have placeholders. This restriction simplifies the proof 
of correctness of the reconstruction and is also required in order to use the LFj typing judgments, 
which are defined only on types without placeholders. 

6.3    Solving Residual Constraints: r P C => $ 

This judgment describes the process of solving all the type-checking constraints in a list C in an 
arbitrary order. To accommodate arbitrary orders we introduce the constraint reordering rule. 
Note that in any particular case a given order is used so that the reconstruction is more effective. 
However, for the purpose of the reconstruction algorithm we do not care about the particular order 
used. 

rPCi,c2,c3=*tt 

r F M : A =* *        *(r) F tf(C) =^> *'       il«aB=>$        *(r) F *(C) =$► *' 

6.4    Type Reconstruction for Objects: rFM:i^f 

This is the base judgment of the type-reconstruction algorithm. The term M can contain variables 
(but no placeholder variables) that are defined in T and constants that are defined in E. M 
can also contain placeholders and implicit abstractions. However, the restriction is that the type 
environment F and the type A do not contain placeholders. This is again required in order to 
relate the type reconstruction judgment to the LFj typing judgment and has the beneficial effect 
of simplifying the proof of correctness. 

Recall that a canonical LFo object is either an abstraction with a canonical body or an atomic 
object. The type-checking judgment deals directly with abstractions and invokes the constraint 
collecting and solving judgments for atomic objects. 

T,x:APM:B=>- 
Tf\x.M:Ux:A.B 

Note that the implicit abstraction recovers the argument type from the goal type, which must 
be a type abstraction. Note also that no reconstruction is allowed under abstraction (the returned 
substitution must be empty). This restriction does not harm in any way the usefulness of the 
reconstruction algorithm for first-order logic proofs but simplifies the correctness arguments greatly 
by eliminating worries about the returned substitution containing the bound variable x. 

In the case of a constant, a variable or an application the typing judgment first collects type 
reconstruction constraints that are then solved in an arbitrary order. 

TFM^(A;C;B) T,AfC,A*aB^q Dom(A) C Dom(^)       M is not an ab- 
r F M : A => ^|ipom(r) straction 

Note in the previous rule that it is required that the substitution returned be defined on all 
placeholder variables introduced by the current collecting operation. In this respect the presented 
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type reconstruction algorithm is simpler, and potentially less powerful, than constraint based al- 
gorithms that allow reconstruction constraints to persist unsolved beyond the place where they 
were introduced. However, this restriction does not seem to limit the power of the algorithm for 
reconstructing first-order proof representation but on the other hand eliminates the need for all the 
machinery for managing persistent constraints. 

Note also that the reconstruction algorithm does not check explicitly that the returned substi- 
tution is well-typed. However, this property holds because of the design of the unification, which 
we present next. 

6.5    Unification: M &a M' =4> * and M « M' =>• * 

The purpose of unification is to check the equivalence of two objects or two types. As a result, the 
unification constructs a substitution of terms for placeholder variables. Both terms being checked 
might contain implicit abstractions and might not be in canonical form, but they cannot contain 
placeholders. 

The main restriction of the unification that we present here is that is does not try to unify 
terms where the placeholder variable is the head of an application. In such a case the resulting 
substitution would not be uniquely defined and thus we prefer to avoid it. However, this restriction 
does not seem to harm the power of the reconstruction of first-order logic proofs. In order to express 
this restriction we use two flavors of unification: atomic and normal. Only the atomic unification 
can be used for the head of an application and we restrict it so that a placeholder variable is not 
instantiated by an atomic unification. The unification judgments are presented below. 

Atomic Unification 

X i^^n X 

M^aM'^V tf(JV) « tf(W) =► *' [^„/^...[JVi/^lM «fflM'=>* 
MiV«aM'JV'^*'o* (Xxi.... Xxn.M) Ni... Nn «ffl M' => # 

Normal Unification 

M taM' =» • M ^a M' =» $ 
Xx.M sä Xx.M' =>■ •       M&M' =4># 

u £ FV(M) 
u « M =$> u 4- M 

The side condition on the instantiation rule is required for correctness. Checking this condition 
requires scanning the object M that is used to replace the placeholder denoted by the placeholder 
variable u. We would very much want to avoid this check. Recall that we had two arguments in 
favor of the implicit representation: smaller representation size and faster checking based on the 
fact that the reconstructed objects, such as M here, do not require checking because they are part 
of the trusted type. As expressed by the unification judgment the reconstructed fragments do not 
require checking but they require scanning. However, in many cases that occur in checking proofs 
of first-order logics the occurs check is not necessary. We view the removal of the occurs check as 
an optimization and we discuss it in Section 9.3. 

20 



6.6    Why does type reconstruction work? 

The five reconstruction judgments described in the previous sections can be used directly as a type 
reconstruction algorithm. The process of reconstructing and typechecking an object M proceeds 
as follows: 

• If M is an abstraction then use the abstraction rule and continue with the reconstruction of 
the body. 

• Otherwise, M must be a variable or a constant applied to zero or more arguments. Use the 
collecting judgment to scan the arguments and replace the implicit ones with placeholder 
variables and collect the explicit arguments in a list of type reconstruction constraints. Add 
to the list of constraints the unification of the required type for the application and the type 
computed based on the type of the application head and arguments. 

• Solve the list of constraints in a convenient order. As a result, return an instantiation for 
some placeholder variables. 

• Verify that all local placeholders have an instantiation. 

The above procedure can be implemented directly as described by the inference rule describing 
the reconstruction judgments. If all we are concerned is validating implicit representation of first- 
order proof we can further simplify and optimize the algorithm, as shown in Section 9.3. Before we 
discuss these optimization we prove the correctness of the reconstruction algorithm. Corollary 6.1 
relates the reconstruction judgments to the implicit typing judgment. This is a sufficient correctness 
criterion for checking proofs because of Theorem 5.1, which in turn relates the LFj typing judgment 
to the LF typing judgment shown to be adequate. 

Corollary 6.1 (Correctness of proof reconstruction) If M is an LF{ object such that 
PVF(M) and ■ f M : pf rPn =► • then ■ f M : pf rPn. 

Unfortunately, the proof of Corollary 6.1 is nowhere as simple as its statement and therefore 
we devote the entire next section to it. Section 8 is necessarily very technical but the reader can 
safely skip Section 8 on the first reading and go to Section 9.3 where several optimizations of type 
reconstruction are discussed. 
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7    Algorithms for Implicit Representation 

Section 6 presents a type reconstruction algorithm that is able to typecheck LF terms containing 
placeholders. It is obvious that not all subterms can be reconstructed by our algorithm and therefore 
not all implicit representations of a term can be typechecked using it. In this section we define 
three algorithms that can be used to eliminate redundant copies of subterms in such a way that 
the resulting implicit representation can be typechecked using our reconstruction algorithm. 

In order to simplify the discussion of the representation algorithms we fix the order of constraint 
solving such that the type unification is always performed first followed by the typing constraints 
in the reversed order of their collection. Formally, we restrict our attention to an implementation 
of reconstruction where the constraint reordering rule is not used. This order is suited for the vast 
majority of reconstruction tasks. We shall discuss the few exceptions at the end of this section. 

We present the implicit representation algorithms as erasure procedures, converting the full 
LF representations to implicit representations. The simplest erasure algorithms presented below 
translate easily to representation function defined as mappings from proofs to LFj terms, following 
the model of the full LF representation function presented in Section 3. 

We consider three algorithms with varying complexity and effectiveness. The output of each of 
these algorithms, as well as the fully-explicit representation, are equally well suited for typechecking 
using the reconstruction algorithm presented in Section 6. The only difference is the size of the 
proof representation and the running time of the reconstruction. The quantitative analysis of the 
erasure effectiveness is presented in Section 11. 

The first algorithm is completely local in the sense that the erasure of a term does not depend 
on the context where the term occurs. Then we improve the representation by recording a one- 
bit information about the enclosing context. This is equivalent to having two erasure algorithms 
working in tandem. The last algorithm is fully global and it attempts to optimize the size of the 
representation by analyzing the entire enclosing context. 

We conclude this section with a brief discussion of the situations where each of the presented 
algorithms has practical value and when a combination of them makes sense. 

7.1    A Local Algorithm 

We start with a local erasure algorithm that defines the erasure of an LF term independently of its 
surrounding context. This algorithm can be viewed as an alternative mapping from proofs to LFj 
terms, to be used instead of the full representation function shown in Section 3. 

The local erasure algorithm is specified as a set of representation recipes, one for each constant in 
the signature. We write R(c) to denote the representation recipe of the constant c. A representation 
recipe is a sequence of representation characters, each corresponding to an argument to which the 
constant is applied. The length of the representation recipe is dictated by the number of arguments 
that the constant can take. For the local algorithm we consider only two representation characters, * 
and e. Each argument that corresponds to an * representation character is replaced by a placeholder 
and each argument that corresponds to an e is replaced with its implicit representation. 

For example, the representation recipe associated with the constant and_i is * * e e, writ- 
ten i?(and_i) = **ee. This means that the implicit representation of the full LF term 
and_i Mi Mi M3 M4 is and_i * * M3 M[, where M'z and M{ are the implicit representations 
of M3 and M4 respectively. 

Before we consider the details of computing representation recipes we show the definition of 

the local implicit representation as a function M A M'.   We shall use the auxiliary function 
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M A M' + R to say that the implicit representation of the application M is M' and the recipe 
for the remaining arguments of M is R. We also use the notation en to denote a fully-explicit 
representation recipe, which is used for the applications whose head is a variable. 

M AM' M AM' + R 
\x: AM 4 Xx.M1 M A M' 

Mi A M[ + *R MIAMJ + eff M24lj 

c A c + Ä(c)     iAi + e"    Mi M2 A M{ * + R Mx M2 A M{ M'2 + fi 

Note that as part of the local erasure, the type of bound variables is removed in addition to 
those terms specified by the representation recipes. 

The only missing detail of the local erasure algorithm is the representation recipe function. 
Recall that during the type reconstruction the constraint solving judgment must instantiate all local 
placeholder variables. Recall also that we are considering an implementation of type reconstruction 
that always solves first the unification judgment from a constraint list. For the local erasure 
algorithm, we impose the simple restriction that all the local placeholder variables are instantiated 
while solving the unification constraint. In this is true then, whenever a typing judgment is invoked 
as part of constraint solving, the type does not contain placeholder variables or placeholders. This 
invariant is clearly established initially because the top-level type cannot contain free variables and 
is preserved by constraint solving because the unification is always performed first. 

In order to maintain the above mentioned restriction we must only introduce placeholder vari- 
ables that are going to be instantiated while unifying the application result type with another 
type without placeholder variables. This determines which arguments in an application can be 
placeholders. 

If we view the constants in the signature as representations of proof rules, then the local erasure 
algorithm says that in each rule we must explicitly specify at least the instantiations of logical 
variables that could not be recovered from the conclusion of the rule. 

Before we give a general recipe function we discuss the cases of several constants. Consider first 
the constant + with the following type: 

+   :   exp —> exp —)• exp 

It is obvious that no placeholder variable can be instantiated as part of the unification of the 
result type (exp) with another type. Therefore, no implicit arguments are allowed for the constant 
+. This is denoted by the representation recipe R(+) = ee. Following the same line of reasoning 
we infer that the representation of expressions and predicates must be fully-explicit. 

The next constant we consider is ancLi with the type: 

and_i   :   Up: pred.ITr: pred.pf p —> pf r —> pf (andp r) 

If we unify the type pf (and up ur) with another type, and if the unification succeeds, then we 
obtain instantiations for up and for ur and for nothing else. This suggests that the only arguments 
of and_i that can be implicit are the first two. This is denoted by the recipe i?(and_i) = * * e e. 

Next we consider the case of the constant and_er with the type: 

and_er   :   Up :pred.E>: pred.pf (and p r) —> pf r 
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For the same reasons as above we see that only the argument r can be instantiated by solving the 
unification constraint, hence the representation recipe i?(and_er) = e*ee. Note that even when the 
argument p could be recovered by type inference on the third argument, the local erasure algorithm 
requires it to be explicit. It is in cases like this where more sophisticated erasure algorithms, such 
as the ones showed next, achieve smaller representations. 

We conclude our examples with a slightly trickier case. Consider the constant all_e with the 
type: 

all_e   :   IIp:exp —> pred.Ile:exp.pf (all p) —> pf (p e) 

In this case the type pf (up ue) does not unify with any another type because the placeholder 
variable up is in an application head position. Therefore at least the predicate p must be given 
explicitly in order to perform the unification. If this is the case, we consider unifying the type 
pf (P ■»,.) for some P. We cannot assume that ue is instantiated by this unification because, for 
example. ue might not occur at all in the normal form of (P ue). Because of this, the expression e 
must also given explicitly. This justifies the all-explicit representation recipe i?(all_e) — eee. Note 
that in a signature representing first-order logic there are only few cases where similar situations 
occur, namely the constants related to universal and existential quantification. 

We could continue the case analysis for all the constants from S. Instead, we prefer to develop 
a general algorithm for computing the representation recipes. 

As we have seen in the informal computation of representation recipes, it is important to know 
t he set of placeholder variables that are certainly instantiated during the unification of a term. For 
tins purpose we define a function Inst that computes the set of "instantiable" variables of a term. 

The definition of Inst follows the structure of the unification judgment and has an atomic and 
a normal variant. We write Inst(M) = S to mean that the variables in S are certainly instantiated 
by the successful normal unification of M with an LF term without placeholder variables. The 
atomic variant of the instantiation function is written Insta(M) = S + ß, where ß is an output 
parameter specifying whether the head of M is a placeholder variable. These judgments are defined 
by the following rules: 

Insta(M) = S + ß Insta(Mi) = 0 + true 
Inst{Xx:A.M) = 0     Inst(u) = {u} Inst(M) = S Insta(Mi M2) = 0 + true 

Insta(Mi) = Si + false Inst(M2) = S2 

Insta(u) = 0 + true    Insta(c) = 0 + false Insta{Mi M2) = Si U S2 + false 

Note in the above rules that no variable is instantiated during the unification of an abstraction. 
Also, if the head of an application is a variable then the atomic instantiation function returns 
ß = true and, as in the case of all_e discussed above, we must assume that no variable is 
instantiated as part of the unification. The precise relation between the instantiation judgments 
and the unification is described by the following theorem: 

Theorem 7.1 IfV0(M) &a N andPVF(^0) andPVF(JV) then Insta{M) C Dom{VQ)UDom{y). 

This theorem says that all the variables in Insta(M) that are not already instantiated (by \&o) 
are instantiated during unification with a type without placeholder variables. The theorem has an 
easy proof by induction on the structure of M. 

It is convenient to define the complementary function Nonlnst(A) = FV(A)\Insta(A), to denote 
the set of variables that are not necessarily instantiated as part of the unification of A. 
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Next we define the representation recipe function using the helper judgment RA(A) = r + S, 
where A is a type, r is partial a representation recipe and S is a set of placeholder variables that 
are guaranteed to be instantiated while unifying the result part of A. The representation recipe of 
a constant c is computed based on its type £(c) as follows: 

R{c)=r if RA(Z(c)) = r + S 

The RA judgment is defined by the following rules: 

RA([u/x]B) = r + S        ueS       RA{[u/x]B) = r + S        u £ S 
RA(Ux:A.B) = *r + S RA(Ux:A.B) = er + S 

A is atomic 
RA(A) = • + Inst(A) 

The RA judgment scans the type of a constant, starting from the result type. It computes the 
set of instantiable variables of the result type and then works backward adding to the representation 
recipe a * character if the corresponding argument is instantiated or an e character otherwise. 

This completes the definition of the representation recipe function and with it the description 
of the local erasure algorithm. We present next a more sophisticated erasure algorithm that works 
in a similar way. 

7.2    The One-bit Global Algorithm 

The local erasure algorithm presented above has the advantage of simplicity and context inde- 
pendence. However, there are practical cases when its result is not satisfactory. Consider the 
fully-explicit term representing a proof of Pi D P2 '■ 

impl_i Pi P2 (Azrpf Pi.impl_e Pi P2 Di x) : pf (impl Pi P2) 

assuming that D\ : pf (impl Pi P2) for some predicate representations Pi and P2. The local 
representation recipe for the two proof constants involved (defined in Figure 8 on page 9) are 
P(impl_i) = * * e and P(impl_e) = e * e e. Therefore the local erasure of the above term is: 

impl_i * * (Aa;.impl_e Pi * D[ x) : pf (impl Pi P2) 

assuming that D^ is the local erasure of D\. We immediately see that the first argument to impl_e 
could be reconstructed from the context in which it appears, for example from the fact that a 
representation of its proof is x of type pf Pi. This example is very simple and the potential savings 
are small. However, similar situations occur whenever there are proof rules for which some of the 
logical parameters cannot be recovered from the conclusion alone but from the surrounding context. 
This is the case with conjunction and implication elimination rules and many arithmetic rules such 
as the transitivity of equality. 

The one-bit global erasure algorithm uses only one bit of information about the context or more 
precisely about the circumstances in which the type reconstruction will be invoked on the term. 
This bit of information says whether, at the time of type reconstruction, the type can contain 
placeholder variables or not. If the type cannot contain variables we say that the term must be 
represented for typechecking. Otherwise we say that it must be represented for type inference, and 
in such a way that type reconstruction on that term alone must succeed in finding an instantiation 
for all placeholder variables that appear in the type. 
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We express the one-bit global erasure algorithm in terms of representation recipes, in a similar 
manner as the local algorithm. We replace the e representation character with two separate char- 
acters ec (for checking) and ej (for inference). Due to the fact that now the erasure function uses 
one-bit of global information (whether it is checking or inference) we change the erasure function 

to M A- M' where p can be either c or i.  The only erasure rules that are changed are those for 
constants and for explicit application: 

Mi A M[ + ecR        M2h M'2       MiAM[ + eiR        M2 4 M'2 

MiM2AM[M'2 + R MXM2AM[M2 + R cAc + Rp{c) 

The one-bit representation recipes now determine not only whether an argument must be im- 
plicit or not, but also whether the explicit arguments must be represented for checking or for 
inference. At this point we have reduced the erasure to the static computation of the representa- 
tion recipes Ri and Rc for each constant in the signature. These functions are computed, as in the 
local case, using an auxiliary judgment RP

A(A) = r + Si + Se. In addition to the set of variables 
Si that are instantiated by constraint solving, the new judgment also contains a set of placeholder 
variables Se that must be explicit. This judgment is defined by the following rules: 

A is atomic A is atomic 
RC

A(A) = ■ + Inst(A) + Nonlnst(A)     RA(A) = ■ + 0 + NonInst{A) 

Rp
A([u/x]B)=r + Si + Se        ueSi 

Rp
A(Ux:A.B) =*r + Si + Se 

RA{[u/x]B)=r + Si + Se u(£Si Inst{A) C 5jU Se 

Rp
A(Ux:A.B) = ecr + Si + SeU (NonInst(A)\Si)        ~ 

Rp
A([u/x]B) = r + Si + Se u(£Si Inst(A) % Si U Se 

Rp
A(Ux:A.B) = eir + SiU (Inst(A)\Se) + SeU (NonInst(A)\Si) 

The definition of RA deserves some explanations. First, recall the assumption that the con- 
straints are solved in the reverse order of introduction, starting with the unification constraint. In 
the case of checking, the unification is with a type without placeholder variables. The result is an 
instantiation for all instantiable placeholder variables (therefore Si = Inst(A)) provided that all 
non-instantiable variables (collected in Se) are explicit. This justifies the rule for RA(A) when A is 
atomic. In the case of inference the same unification happens but this time with a type that might 
contain placeholder variables. We have to assume conservatively that no placeholder variable is in- 
stantiated to a fully-explicit term, hence S{ = 0. However, we also require that all non-instantiable 
variables are explicit as in the case of checking. This explains the rule for RA (A) when A is atomic. 
In case of RA(Ux: A.B), because of the constraint solving order we first deal with the arguments 
corresponding to B. If u is instantiated after dealing with B then it can be left implicit, hence the 
rule for * r. Otherwise, the argument corresponding to u must be left explicit and depending on 
whether the variables of A are all instantiated at this point we decide whether to use checking or 
inference on it. The set Se is collecting the set of placeholder variables that cannot be instantiated 
because they occur in function position in some type. Note that the sets Si and Se are always 
disjoint. 
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A case where Se is non-empty and is essential for the correctness of the erasure algorithm is for 
all_e of type: 

all_e   :   ITp:exp -» pred.üe:exp.pf (all p)--¥ pf (p e) 

In this case p G NonInst(pf (p e)) but p £ Inst(pf (all p)). If we did not maintain the list 
Se we could have the impression that p can be reconstructed by type inference on the term of type 
pf (all p) without noticing that the unification constraint would have failed earlier because of a 
placeholder occurring in an application head position. 

Using the function RP
A we can define the representation recipes as in the local algorithm: 

RP(c) if Rp
A(X(c))=r + Si + Se 

In the table below we show examples of representation recipes as produced by the local algorithm 
and the one-bit representation algorithm. We notice that in the case of +, and similarly for all 
expression and predicate constants, all arguments must be explicit in both the local and the one- 
bit representation recipes. Also, in such cases, the inference recipe and should never be required 
during erasure. The next four cases shown in the table are examples where the one-bit global 
algorithm is able to remove more arguments than the local erasure algorithm. 

c R(c) Rc(c) Ri(c) 

+ 
and_el 
and_er 
impl_e 
= tr 
+ COII1 
all_e 

ee 
*ee 

e*e 
e* ee 
* e* ee 
* * 

eee 

* * ei 
* * ei 
* * ec ei 
* * * ec ei 
* * 

6c ec ec 

* * ei 
* * ei 
**eiei 
* * * ej ej 

^c 6c 
^c 6c 6c 

Table 2: Examples of representation recipes computed by the local and one-bit global algorithms. 

In order to analyze the relation between the local and the one-bit recipes we remark that the 
local representation function is a special case of the one-bit representation recipes. The main 
difference is that the set Se in the local recipe function is always the negation of the set Si with 
respect to the universe of variables. This only needs to be enforced in the rule for RC

A in the one-bit 
function in order to recover the local recipe function. 

With the above remark we see that the size of set Si in the local recipe function never increases 
beyond the initial size established for the result type. And as the size of Si determines the maximum 
number of implicit arguments we conclude that the local erasure algorithm will always remove fewer 
arguments that the one-bit global algorithm for every particular application. This conclusion is 
supported by the examples shown in Table 2. 

Furthermore we notice in Table 2 that Rc{c) has more implicit arguments than Ri(c) and also 
more ei characters corresponding to the explicit arguments. This can be explained informally by 
remembering that there are additional constraints when representing a term for inference instead 
of just checking. In the case of the representation for inference, the term must contain enough 
subterms to allow the reconstruction of its type, while in the case of checking more subterms can 
be omitted and later reconstructed from the fully-explicit type. 

We can characterize the one-bit global erasure algorithm as eliminating some explicit arguments 
remaining after the local erasure and redistributing the information required for their reconstruction 
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to the subterms corresponding to sibling arguments, by marking them for inference. The additional 
information required for inference is more apparent at the leaves of the proof tree. Here there are 
no siblings to offload to information and hence the inference erasure is not able to erase any 
subterms while the checking erasure can remove all of them. This is illustrated by the case of +com. 
Even though the cost in the one-bit representation is pushed towards the leaves, the resulting 
representation is in general smaller than the local representation because part of the size of the 
erased argument is reconstructed from the structure of the proof of sibling arguments, and only a 
small part from explicit arguments at the leaves. 

7.3    The Global Algorithm 

The local erasure algorithm is able to recover some arguments of the representation of a proof- 
rule instance from the conclusion of the proof rule. Then in the one-bit algorithm we increase 
the reconstruction power by recovering additional arguments from the structure of some of the 
hypotheses of the proof-rule. In this section we present an even bettor algorithm that recovers 
additional arguments by examining the entire context in which a proof-rule is used. Also, the global 
erasure algorithm attempts to overcome another limitation of the previous algorithms, namely the 
loss of information due to the static conservative approximation of non-instantiable variables. The 
global algorithm considers each constant with its actual parameters and can therefore minimize the 
set of non-instantiable variables. 

The basic idea of the global algorithm is to start by assuming that all arguments of the repre- 
sentation of a proof-rule instance are implicit and then simulate type reconstruction. Whenever an 
argument cannot be reconstructed it is made explicit and its implicit representation is made part 
of the final representation. 

Because the global erasure algorithm works by simulating type reconstruction, it has the same 
overall structure. Unfortunately there are enough minor variations to require a new implementation. 
This make the global erasure algorithm expensive to implement. 

The first change we have to make is to the unification judgments to consider the case of a 
placeholder variable that is the head of an application. In this case the placeholder variable must 
be instantiated with the term from the full representation that it replaces. For this to be possible 
the unification judgment must take a parameter ^o containing the instantiations for all placeholder 
variables that would produce the original fully-explicit term. Also the unification must return, in 
addition to the usual substitution, another substitution, called the explicit substitution, containing 
instantiations for the non-instantiable variables. We use the following notation to denote the new 
variant of unification \&o l~~ A «0 B =*> VP + *e. Similarly we add a new substitution argument 
and an additional substitution result to the main typing judgment. The resulting judgment is 
written r + *o l~ M : A =» * + \&e. To this we add one additional result M', the resulting implicit 
representation of M, and we write the resulting judgment in functional style GErase(T, \&o, M, A) = 
(\F,\I>e,M'). The global erasure algorithm is given informally in Figure 15 and a step-by-step 
explanation is made below. A formal description of the algorithm would follow the structure of the 
type reconstruction judgments. 

In the case of an abstraction the erasure is done recursively on the body of the abstraction and 
the type of the bound variable is omitted from the resulting representation. 

In the case of a constant application there is an opportunity to leave some of the arguments 
implicit. We start in step 2(a) by introducing a placeholder variable for each argument, trying 
therefore to maximize the number of implicit terms. In step 2(b) we record the original values of 
the newly introduced placeholder variables in the substitution ^o- 
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GErase{r,ty0,M,A) = 

1. If M = \x:Ax.Mi and A = Ux:Ai.A2 with GErase(T,x : Ai,^0:Mi,A2) = (-,*e,M{) then 
the result is (•, \I/e, Xx.M[) 

2. IfM = cMi...Mn andY,(c) =Hxi\Ai Tlxn:An.An+i then 

(a) LetA = ui:A1,U2:[ui/xi]A2,...,un:[un-i/xn--i]...[ui/xi]An, and 

(b) Let *o = *o, ui 4- Mi,...,un <- Mn, and 

(c) Let ^0\-Ataa [un/xn] ■ ■ ■ [ui/xi]An+1 => $ + *e 

3. Let A = * o ^e(A) 

^. 7/ A = •, i/ien return with (^\Dom(r) : *e|i)om(r) >c M[... M^) where 

■$e(ui)    if n e Dom(^>e) H M- = , 1      '   * otherwise 

5.    (a) Let A = A', Uk : A'fc, and 

(&j Let GErase((r,A'),*o,*oK),^) = (tf',^,M£), and 

(c) Let *e = [itfe <- M'k] o *g o $e, and 

(d) Let * = *' o *, and 

fe,) Let A = A', and 

f/j Go to step 3 

Figure 15: The informal description of the global erasure algorithm. 

The purpose of the remaining steps is to build the substitution \I/e giving an instantiation for 
those arguments that cannot possibly be implicit. Recall that constraint solving is done in reverse 
order, starting with the unification constraint. We start therefore with the unification and in step 
2(c) we compute both the set of variables that must be explicit in order for the unification to 
succeed (\I/e) and the set of variables successfully instantiated by the unification. 

Then in step 3 we remove these variables from A. If no variables remain, then we conclude 
that all placeholder variables introduced in step 2(a) can be either recovered or must be explicit 
in order for the constraint list to be solvable. We return with an implicit representation of M' as 
dictated by \I/e. 

If there are placeholder variables left in A then at least the last one must be explicit. If this were 
not the case we would have no possibility of recovering it by solving the remaining constraints. In 
order to compute its implicit representation we recursively invoke the global erasure on the original 
value of the placeholder variable ^o(^A:)- The resulting implicit representation is added to ^e such 
that it can be inserted in the final result in step 4. However, during the computation of the global 
erasure of ^o(^fc) we might have instantiated further variables (^') and found variables that must 
be explicit ($'e). These variables are removed from A in step 3 and we cycle until all the variables 
in A are dealt with. 

The global erasure algorithm achieves an optimal representation given a specific constraint 
solving order. This is the case because, by design, it starts with all arguments implicit and it only 
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reverts an argument to explicit status when the reconstruction would not work otherwise. 

7.4    Discussion 

In all three erasure algorithms we have assumed a specific order of constraint solving. In our exper- 
iments this fixed order performed surprisingly well. However, in selected cases the representation 
can be made even smaller if a different order is adopted. The largest benefit can be achieved if we 
allow a different reconstruction order for each application instance. 

We have not tried this approach but instead we have selected a few constants for which a 
non-default order has the potential of decreasing the size of the representation. An example is the 
constant all_e where it is better to typecheck the constraint corresponding to pf (all p), with the 
hope of recovering ,p, before solving the unification constraint on pf (p e), which invariably fails if 
p is not instantiated. This approach produced such minor improvements that we did not consider 
it further. 

Despite its limited knowledge of the context, the local erasure algorithm produces implicit 
terms that are close to optimal for most logic proof rules and it might be a good practical choice 
in situations where absolute optimality is not required. In situations where the size of the proof or 
the its validation time is crucial we can use one of the global algorithms. 

As we mentioned before, the global erasure algorithm is optimal for a given reconstruction order. 
However it requires as one of its inputs the whole LF term, which might be very large. Another 
disadvantage surfaces in the cases where the proof is build gradually from small pieces at a time, 
as is the case in a theorem prover that outputs a proof representation. These small pieces cannot 
be optimized until the whole proof is constructed. 

We show in Section 11 that we din not noticed major improvements in the size of the rep- 
resentation produced by the global algorithm when compared to the one-bit algorithm. This, in 
conjunction with the disadvantages of the global erasure algorithm, makes us conclude that it is 
not worth using, or in other words that the simpler one-bit algorithm achieves near optimal results. 

We believe that the practical way to build implicit representations of proofs is to use the 
local algorithm for maintaining small intermediary fragments of proofs. When the whole proof is 
assembled we can apply the one-bit global erasure algorithm to it. The result will be the same as 
if we started from the fully-explicit representation but without the expense of building the large 
intermediary proof object. Another benefit is that the overall running time is usually smaller when 
running the erasure algorithms in sequence because the more primitive the algorithm the smaller 
the cost of erasing one subterm. 

The correctness criterion for an erasure algorithm is that the type reconstruction algorithm 
succeeds on the resulting representation. We did not state formal correctness results for the erasure 
algorithm presented in this section for two main reasons. One is that we motivated each design 
choice in the erasure algorithms with respect to the type reconstruction algorithm. Also, for 
practical reasons, the correctness of the erasure algorithm is not crucial. Its result can always be 
validated by running the type reconstruction algorithm. 
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8    The Correctness Proof of Type Reconstruction 

In this section we prove that the reconstruction algorithm presented in the previous section is 
adequate for checking the validity of proofs. One of the advantages of developing the proof checking 
algorithm as a variation on LF typechecking is that we have a well-understood formal framework 
that can be used for the succinct expression of the correctness criteria and also for proving them. 

We want to stress that the proof of correctness is not just an exercise in type-theoretic proofs. 
Besides the obvious purpose of ensuring the correctness of the type reconstruction algorithm— 
which is not obvious by inspection only—the correctness proof also constitutes a thorough analysis 
of the strengths limitations of our algorithm. 

The algorithm that we presented in the previous section is limited by the side-conditions present 
in some of the rules, most notably the collection of explicit parameters, the typing of abstractions 
and the instantiation rule. The correctness proof can serve as a reference documenting the need for 
every such side-condition. In many practical cases the reconstruction is used in circumstances when 
some of the side-conditions do not need to be enforced. These circumstances can be discovered 
only after a deep understanding of the purpose of the side conditions in the correctness proof. 

In Section 10 we show how we can significantly improve the performance of the reconstruction 
algorithm by removing some of the side conditions in the special case when we are checking first- 
order logic proofs. 

The rest of this section is very technical and can be skipped on first reading. The only reference 
back to the material in the rest of the section is to justify some of the optimizations that we 
implemented for the reconstruction. 

8.1    Notation and Conventions 

We write $(T) to denote the result of applying the substitution ^ to a type environment T. The 
resulting type environment is defined on Dom(ty(T)) = £)om(r)\Dom(^') as follows: 

V(T)(x) = *(r(x)) Vx e Dom(T)\Dom{V) 

Note that the type declarations for the placeholder variables defined by the substitution are 
removed from the resulting type environment. 

We write V h ^ to denote that the substitution ^ is well-typed according to a type environment 
T, using the LF; typing rules. As a general note, our reference typing system is LFj. Formally, 

T h * iff Vu € Dom{^) then u G Dom{Y) and *(r) f- *(«) : tf (r(u)) 

In order to simplify the presentation of the correctness proofs in this section we make the 
convention that all the types involved are placeholder-free. This applies to types given as part 
of the theorem hypothesis or types mentioned in the conclusion of helper lemmas and theorems. 
Whenever new types are created we shall check this property but we do not express it explicitly in 
the statements of the theorems. Because of this convention we can use freely the LFj typing rules 
without checking that the PF side-conditions hold. 

In order to keep the presentation focused we have segregated a number of helper lemmas in 
Section 8.7 at the end of this section. 
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8.2    Correctness of the Type Reconstruction Judgment 

The type reconstruction algorithm is expressed as five mutually recursive judgments. Not sur- 
prisingly the correctness proof of the reconstruction algorithm consists of five mutually dependent 
correctness proofs for the constituent judgments. These proofs are by induction on the structure 
of the reconstruction judgments. Occasionally, a proof invokes the theorem for a related judgment, 
in the same way as the corresponding judgment invokes a related judgment. For the five proofs 
at hand the chain of theorem invocations is circular but the derivations involved are structurally 
smaller, therefore the induction is well-founded. 

We start with the correctness theorem about the main reconstruction judgment. We cannot 
prove the Corollary 6.1 directly. Instead we have to strengthen the statement of the theorem so 
that the induction goes through. In particular we have to allow for arbitrary typing environments 
and types. Note that there might be placeholder variables in V and A but no placeholders. The 
correctness theorem is stated formally bellow: 

Theorem 8.1 (Correctness of the Type Reconstruction) IfY and A are a type environment 
and a type respectively such that PF(r) and PF(^4) and T f A : Type and M is a term such that 
PVF(M) andifTFM :A=>^ then 

• rh$, and 

• PF(#), and 

• tf(r) F-M:V(A). 

From the Theorem 8.1 we can immediately prove the Corollary 6.1 for the empty type environ- 
ment and the empty substitution, if we note that PF(pf rPn) by the definition of the representation 
function. 
Proof: (of Theorem 8.1) The proof is by induction on the structure of the derivation P::FFM: 
A =>■ \P. There are two cases, depending on the last rule used in V. 
Case: If M is an abstraction: 

V = 
T,x:AfM:B^- 

Tf\x.M:Ux:A.B=> 

It is obvious that the empty substitution is well-typed and placeholder-free.  Because PF(r) and 
PF(ILE: AS) it follows that we can apply the induction hypothesis on V\ and infer that T,x : A f 
M : B. Therefore we can also infer that T f Xx.M : Hx:A.B, which is the desired conclusion. 
Case: If M is not an abstraction: 

V = 

vx v2 

TfM^(A;C;B) T,AFC,A^aB^^> Dom(A) C Dom($) 
rfM:4^$ 

We follow the sequence of deduction steps shown below: 

1. r f A : Type (hypothesis), 

2. PF(r) and PF(A) and PVF(M) (hypothesis), 

3. Using Theorem 8.4 on T>2 we infer that 
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4. For all N : A' from C there exist *i and *2 such that *i(I\ A) P- *i(JV) : *i(A') => $2 

5. With 2, 4 we apply Theorem 8.5 on V\ (with A' = 0) and infer that 

6. r, A f B : Type, and 

7. PF(A), and 

8. PF(B), and 

9. For all N : Ä in C we have PF(A') and PVF(JV) and T, A ^ A'-: Type 

10. From 1 we infer that r, A f A : Type. 

11. With 2, 6, 7, 8, 9 and 10 we apply Theorem 8.6 on 2>> and infer that 

12. r,Ah$, and 

13. V(A) =0 *(£), and 

14. PF($), and 

15. For all TV : A' in C we have tf(I\ A) f N : V(A'). Also using Lemma 8.20 with Dom(A) C 
Dom(*) we infer that *(r) f N : V(A'). 

16. With 9, 12, 14, 15 we apply Theorem 8.7 and infer that 

17. tf(r) f M : q{B) 

18. Because all placeholder variables from A are new, they cannot occur in F or in B. Therefore 
^(Dom(T)) = *|z)om(r) (r) and $(B) = *|DOTO(D (B). Therefore we get one of the desired 
conclusions. 

19. With 12 and using Lemma 8.20 we prove that T h ^\Dom(r)- Also from 14 we can easily 
prove that PF(*|jDom(r)). 

D 

8.3    Correctness of Unification 

The most important judgments for the type reconstruction algorithm presented in the previous 
section are the unification judgments. Their properties are crucial for the correctness of the re- 
construction and their implementation determine the performance of the reconstruction. The key 
property of the unification judgments is that the resulting substitution preserves the types of the 
placeholder variables, and as a consequence the algorithm does not need to typecheck the substi- 
tution. 

The properties of interest of the unification judgments are expressed in Theorem 8.2. The first 
two parts of the theorem deal with atomic unification of types and objects respectively. The last 
part deals with normal unification of objects. 

Theorem 8.2 (Correctness of Unification) All the types mentioned in the statement below are 
assumed to be placeholder-free. 
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(a) If Ai &aA2=>$> such that T f Ax : Kx and V f A2 : K2 then 

• rh$, and 

• PF(tf), and 

• ty(Ai) =0 $(A2), and 

.   ^(Ki)=3^(K2) 

(b) If Mi Ka M-2 => * and PF(Afi) and PF(M2) such that T f Mt : Ai andTF- M2 : A2 fAen 

• T h <£. arid 

• PF(Vp).   fl77.f/ 

• $(iU]) =.< *(M2), and 

. *(.4,)=,*M2) 

fo) // M, ä A/L, => * and PF(Afi) and PF(M2) sucA fÄo« r f Mx : A and V P- M2 : A then 

• r i- *. «Ttd 

• PF(#). and 

• ¥(A/,)=., *(M2) 

The complicated statement above is required in order to prove the theorem by induction. All 
the actual uses of the Theorem 8.2 are in the form of a much simpler corollary shown below. The 
corollary follows immediately from the case (a) of Theorem 8.2 by taking K\ = K2 = Type. 

Corollary 8.3 If Ax &a A2 => * such that T f Ai : Type and T f A2 : Type then 

1. r h *, and 

£. PF(#), and 

5. tt(Aa) =^ *(^2). 

Proof: (of Theorem 8.2) The proof is by induction on the structure of the unification derivations. 
We only show here the cases for the unification of objects (cases b and c).  The proof for atomic 
unification of types follows the same patterns. 
Case: 

V=  CK,aC=>- 

The empty substitution is well-typed in any environment and is also placeholder-free. By hypothesis 
we know that r f c : A\ and T f c : A2. From Lemma 8.14 we conclude that Ai =ß A2. The rest 
of the conclusion follows immediately. 
Case: 

x ~a x ^ • 

Again, the typing condition on the resulting substitution is vacuously true. By hypothesis we know 
that r P- x : Ai and T f x : A2. From Lemma 8.14 we infer that A\ =0 A2, which concludes the 
proof of this case. 
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Case: 

p_   [N/x]M «tt M' => * 
(Az.M) AT «a M' =4> * 

For the purpose of the correctness proof we only consider the /?-reduction case with only one 
argument (n = 1). The general case is proved in a similar way. 
By hypothesis we have that F f (Xx.M) N : A\.  From Lemma 8.14 we infer that Y f Xx.M : 
U.r : A.B and Y f- N : A and [N/x]B =0 Ax.  Because PF((Xx.M) N) we infer that PF(Az.M) 
and PF(N). Therefore PF([N/x]M). Now we can use the Lemma 8.15 to infer that F f [N/x]M : 
[.\/j-]D and therefore F )r [N/x]M : A\. Now we apply the induction hypothesis on V\ and infer 
that rh * and V(Ai) =0 *(42) and that PF(tf). 
\\V also conclude from the induction hypothesis that V([N/x]M) =ß tf(M'). But <&([N/x]M) = 
[*(.V)/.r]*(M) =j ${(Xx.M)N), which completes the proof of this case. 
Case: 

M Ka M' =»• * V(N) w V(N') =» V 
~ M N «a M' iV' =>• *' o * ~ 

\\V follow a sequence of deductions: 

1. From r K- M TV : Ai (hypothesis) and Lemma 8.14 we get 

2. F'r M :Ux:A.B, and 

3. r V- N : A, and 

4. [N/x]B=3A1. 

5. From T f M' N' : A2 (hypothesis) and Lemma 8.14 we get 

G. FfM' :Ux:A'.B', and 

7. Tf-N' : A', and 

8. [iV'/zjß' =ß A2. 

9. Using 2 and 6 we apply the induction hypothesis on V\. We conclude: 

10. rh*, and 

11. PF(tf), and 

12. <!>(Ylx:A.B) =ß ^{Ux:A'.B'), and 

13. *(M) =ß tf(M'). 

14. With 3, 10 and 11 we use Corollary 8.17 and deduce that *(r) f V(N) : V(A). 

15. With 7, 10 and 11 we use Corollary 8.17 and deduce that V(T) f V(N') : V(A'), and using 
12 we also deduce that *(r) f- tt(W) :V(A). 

16. From 11 we infer that PF(*(7V)) and PF(*(7V')). This together with 14 and 15 let us apply 
the induction hypothesis on T>2- We deduce that: 
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17. *(r) h *', and 

18. PF(#')> and 

19. tf'(tf (JV)) =0 *'(*(JV')). 

20. From 10, 11, 17 and 18 with Lemma 8.19 we get the first part of the conclusion: rh$'o$ 
andPF(*'o*). 

21. From 13 and using Lemma 8.21 we deduce that *' o $(M) =& *' o $(M'). This and 19 allow 
us to prove more of the conclusion: *' o *(M iV) =j #' o $(M' JV'). 

22. From 4 and using Lemma 8.21 we deduce that ^'o^(Ai) =0 [<b'o^>(N)/x]^'o^(B). Similarly 
from 8 we get that *' o $(A2) =0 [*' o <&(N')/x]$' o ty(B'). Now we can use Lemma 8.22 
with 12 and 19 to get the last part of the conclusion: *' o *(^i) =0 *' o V(A2). 

This concludes all the cases regarding the atomic unification. The rest of the cases are for normal 
unification. The only interesting cases here are the abstraction and instantiation cases. 
Case: 

T>=       M as M' => ■ 
Xx.M ss Xx.M' => ■ 

The empty substitution is well-typed and also placeholder-free. By hypothesis T f Xx.M : A and 
T f Xx.M' : A.   From Lemma 8.14 we have that A = Ux : AX.A2 and T,x : A\ f M : A2 and 
also V,x : Ai f M' : A2. Now we can use the induction hypothesis on V\ and infer the required 
conclusion: M =0 M'. 
Case: 

v=       u^FV(M) 
U « M => U <r- M 

Let * = u <- M. By hypothesis we have that T ^ u : A and V f M : A and PF(M). From 
Corollary 8.18 we deduce that Y h *. Because PF(M) we can also infer that PF(\I>). The rest of 
the conclusion is trivial: *(w) =ß *(M) because *(M) = M. 

D 

8.4    Correctness of Constraint Collection and Constraint Solving 

Due to the presence of dependent types there is a very close relationship between constraint collec- 
tion and constraint solving. This is mainly because the properties for constraint solving are only 
defined if the type involved is well-typed of kind Type. However, due to the dependency of types 
on terms the latter property of types may depend on some of the other typing constraints. 

Things are complicated because of the reconstruction whose results, and therefore the exact 
shape of future typing constraints, depends on the particular order chosen for solving. If the 
constraints were solved in order then by the time a constraint is about to be solved we could 
prove that the type involved is well-formed of kind Type. We cannot assume in-order solving of 
constraints because much of the power of the reconstruction originates in the ability to solve the 
constraints out-of-order. 

This complicates the correctness proof substantially. We structure the proof as a chain of 
dependent theorems, two for each of the constraint collection and constraint solving judgments. 
Note how the conclusion of one theorem establishes the assumptions of the next one. 
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We start with a theorem about the goal solving judgment, saying that during constraint list 
solving each typing constraint is eventually solved. However, depending on the particular order of 
solving some placeholder variables may be already instantiated, hence the ^i. 

Theorem 8.4 // F F C 4 f then for each N : A' from C there exist \I/i and ^2 such that 
*i(r) f^t(N) : #i(4') =^*2. 

Proof: (of Theorem 8.4) The proof is by induction on the structure of the derivation V :: V F C => \&. 
The conclusion is vacuously true if C is empty.  Also, if the last rule in V is the reordering rule, 
the induction hypothesis proves the conclusion directly. The other two case are similar so we only 
show here the case when the last rule in V is solving a typing constraint. 
Case: 

TfM:A=>y V(T) F $(C) => V 
~ TfC,M:A^y'oq 

We show the conclusion separately for M : A and then for all the other N : A' from C. If 
M : A is the considered constraint in C, M : A then the conclusion follows immediately with 
*i = ■ and *2 = *• Otherwise let N : A' be a typing constraint in C. Then ^f(N) : V(A') is 
a constraint in $(C). By induction hypothesis on V2 we get that there exists *£>[ and $2 

sucn 

that ^(^(r)) F ty[(<b(N)) : *'1(*(^')) => *2. This proves our conclusion with the required 
substitutions $1 = <&[ o ^ and *2 = *2. 

D 
We continue now with a theorem about the constraint collection judgment. Using the result of 

the previous theorem we show that all the types in the resulting constraint list are well-formed and 
of kind Type. 

Theorem 8.5 IfT F M => (A ; C ; B) with PF(r) and PVF(M) and for all N : Ä in C there 
exist *i, ^2 and A' such that tfi(I\ A, A') F ^i(N) : ^i(A') =4> *2 then 

• r, A F B : Type, and 

• PF(A), and 

• PF(S), and 

• For all N : A' in C we have 

- PF(A'), and 

- PVF(iV), and 

-r,AM': Type. 

Proof: (of Theorem 8.5) The proof is by induction on the structure of the derivation V : V F M =4> 
(A ; C ; B). There are 4 cases depending on the last rule used in V. The cases for constants and 
variables follow immediately as the A and the list of constraints are empty and because PF(r). 
The only interesting cases are those that deal with application. 
Case: 

V = r^M^A;C;n;:ffU « » a new placeholder variable rFM*=*-(A,u:i;C; W/x]B) v 

We can immediately apply the induction hypothesis on V\ and obtain that 
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1. r, A F Ux: A.B : Type, and 

2. PF(A), and 

3. PF(ILr:Aß), and 

4. For all N : A' in C we have r,AM': Type, and PF(,4) and PVF(iV). 

5. Because u is new we can transform 4 in T, A, w : A F A' : Type, which proves part of the 
conclusion. 

6. Similarly, from 1 we deduce that T,A,u:Af [u/x]B : Type, which is another part of the 
conclusion. 

7. From 2 and 3 we can show that PF(A,u : A) 

8. From 3 we show that PF([u/x]B), which concludes the proof of this case. 

Case: 

r F M =* (A ; C ■ Ux:A.B) x £ FV(B) D (PF(iV) and PVF{A) and PVF(r(FV(JV)))) 
V = 

TfMN=>(A;C,N:A; [N/x]B) 

We can immediately apply the induction hypothesis on T>\ and infer that: 

1. r, A F Ux:A.B : Type, and 

2. PF(A) (part of the conclusion), and 

3. PF(Ux:A.B), and 

4. For all N' : A' in C we have r,A F A' : Type and PF(A') and PVF(TV') (part of the 
conclusion). 

5. From 3 we can deduce that ~PF([N/x]B) (part of the conclusion). Note that we have used the 
fact that if z 6 FV(J5) then PF(iV). 

6. The only part of the conclusion that remains to be proved is that T, A p- [N/x]B : Type. 
If x $ FY(B) then this follows immediately from 1. Otherwise is suffices to prove that 
r F N : A. 

7. By hypothesis we have that there exist *i, *2 and A' such that *i(r,A,A') F ^i(N) : 
^i(A) => *2- 

8. But PVF(A) therefore we get ^i(A) = A. 

9. Because PVF(M N) (hypothesis) we know that PVF(iV). 

10. From 9 we conclude that *i(iV) = iV. 

11. With 8 and 10 we transform 7 to $i(r, A, A') F N : A =► ^2 

12. But because PVF(iV) then none of the placeholder variables from A and A' occur in TV. 
Therefore we can transform 11 to *i(r) F N : A => *2- 
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13. We know that PVF(r(FV(iV))) therefore we can transform 12 to T F N : A => 92. 

14. With 3 we apply Theorem 8.8 on 13 and deduce that T f _N : A.  As motivated at 6 this 
concludes the proof of this case. 

D 
We continue with a theorem that shown that the constraint solving judgment, when presented 

with constraints whose types are well-formed, produces a well-typed substitution that satisfies the 
constraints. 

Theorem 8.6 // T F C =>■ 9 with 

• PF(r). and 

• For A z=„ D in C we have VF(A), PF(B) andTf A: Type and T F B : Type, and 

• For all N : A' in C we have PVF(iV) and PF(A') and T f Ä : Type, and 

then the. jollmrivy are true: 

• rh*. and 

• PF(*). and 

• For A %„ B in C we have ^{A) =0 ^(B), and 

• For all N : A' in C we have V(T) f N : *(,4/) 

Proof:   (of Theorem 8.6) The proof is by induction on the structure of the derivation V : V F 
C,A^aB^m. 
The case when the last rule in V is the reordering rule poses no problems. Similarly the case of an 
empty constraint list is trivial. We show next the case when the last rule in V is solving a typing 
constraint. 
Case: 

r F M : A =* * *(r) F 9(C) =► 9' 
V = 

TfC,M-A^9'o9 

Because PF(r), PF(4) and PVF(M) and T F A : Type we can apply Theorem 8.1 on ©i and infer 
that rhf, PF(tf) and 9(T) F M : 9(A). 
Because the substitution 9 is without placeholders and is well-typed, the constraint list 9(C) 
satisfies all the conditions for applying the induction hypothesis on T>2 with respect to the type 
environment \I/(r). We deduce from the induction hypothesis that ^(r) F 9' and PF(\I/') and for 
all N : A' in C that 9' o 9(T) F N : 9' o 9. Now we only need to use Lemma 8.19 to conclude the 
proof of this case. 
The case when a unification constraint is solved is very similar with the difference that Theorem 8.2 
is invoked to show that the unification returns a well-typed substitution. 

D 
The last theorem in the correctness proof of the reconstruction algorithm shows why the exis- 

tence of a well-typed substitution defined on all locally introduced placeholder variables is enough 
to guarantee the well-typedness of the original term. 
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Theorem 8.7 IfT F M => (A ; C ; B) and 

• r,Ah*, and 

• PF(tf), and 

• Dom(A) C Dom{^), and 

• For all N : A' m C we have PVF(iV) and *(r) F iV : tf (4') 

then<Ü(T)fM:^(B). 

Proof: (of Theorem 8.7) The proof is by induction on the structure of the derivation V :: T F M =$- 
(A ; C ; 5).  The cases of a constant or a variable follow immediately from the hypothesis.  We 
consider next the cases of application to explicit terms and to placeholders next. 
Case: 

V 
r F M =» (A ; C ; Ux-.A.B) x e FV(B) D (PF(iV) and PVF(A) and PVF(r(FV(AQ))) 

TfMN^(A;C,N:A; [N/x)B) 

We can immediately apply the induction hypothesis on V\ and we conclude that \I/(r) F M : *(IIa;: 
A.B). From the hypothesis we have that PVF(iV) and <£(r) F N : ^f(A). From the application 
rule in LF;, and because PVF(iV) we deduce that *(r) f M N : V([N/x]B). Note that the newly 
introduced type [N/x]B is without placeholders because if a; occurs in B then PF(iV). 
Case: 

Vi 

TfM=^(A;C;Ux:A.B) . ,     ,   ,, 
V = „ ,r , ^ r4 ^—?;—r—, T„X u is a new placeholder variable 

rfM*4(A,ti:i;C; [u/x]B) 

Let vP' = \I/|r,A • We follow a sequence of deductions as follows: 

1. From r, A,u : A F * (hypothesis) and Dom(A, u : A) C Dom(^) (hypothesis) we deduce: 

2. tf(r, A,u : A) F *(u) : V(A), and 

3. Dom(A) C flom(f')- 

4. Because Dom(A,u : A) C Dom(^) we have that *(r, A,u : A) = *(r). 

5. From 2 and 4 we infer that *(r) F *(u) : *(A). 

6. From Lemma 8.20 and 1 we have that T, A F \I/'. Also because u is new it cannot appear in 
C or in V. Therefore we can deduce that for all N : A' in C we have *'(r) F N : q'(A'). 
Thus we can apply the induction hypothesis on V\ and conclude that 

7. V'(T)?- M :Ux:V'{A).V'(B). 

8. Again, because u is new it cannot appear in T, M, A or B. Therefore, from 7 we deduce that 
$(r)fM:fc:$(4$(B). 

9. Recall that we assume that all types involved are without placeholders. Thus, PF(\J/'(^4)) and 
therefore PF(*(4)). 
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10. Now we can use the implicit application rule of LF, with 5, 8 and 9 and with the placeholder 
replacement being \F(w). The resulting type is [<&(u)/x]ty(B) = $([u/x]B). 

11. This case is not complete until we verify that the newly introduced type i&([u/x]B) is without 
placeholders. This follows immediately from the PF(^ (Ux:A.B)) and PF(#). 

Note that this is the place where we require the property that \I> be well-typed and defined for all 
variables in A. 

D 

This concludes the skeleton of the correctness proof for the reconstruction algorithm.  In the 
rest of this section we have the proofs of the helper lemmas used in the correctness proofs.  We 
start first with a family of theorems mirroring the correctness proof but in the special case when 
the terms involved are fully-reconstructed. 

8.5    Correctness in the Fully-Explicit Case 

As part of the correctness of the reconstruction algorithm we make use of the correctness of the 
algorithm in the case when both the LF term and type involved do not contain placeholders or 
placeholder variables. The correctness proof in the fully-explicit form follows the same pattern as 
the proof in the general case, with some simplifications. We do not show here a complete proof of 
this case. We just state the lemmas involved. 

Theorem 8.8 // T f M : A =» * and PF(r), PF(Af), PF(A), PVF(M), PVF(i4) and 
PVF(r(FV(M))) then * = • andV F M :A. 

Proof: The proof of this theorem is done similarly to that of Theorem 8.1 by induction on the 
derivation V : T F M : A =>- \F The abstraction case is simple. For the application case we need 
a series of auxiliary lemmas about the constraint collection and solving judgments in the case of 
fully-explicit terms and types. These lemmas are stated without proof below. 

D 

Lemma 8.9 IfT F M =* (A ; C ; B) and PF(r), PF(M), PVF(M) and PVF(r(FV(M))) then 

• A = •, and 

• PF(B) and PVF(B), and 

• For  all  N   :   A'   in  C   we   have   that  PF(iV),   PVF(JV),   PF(A')   and  PVF(A')   and 
PVF(r(FV(iV))). 

The intuition behind Lemma 8.9 is that because M does not have placeholders, no placeholder 
variables are introduced, hence A = •. Also the terms in C are subterms of M and therefore do 
not contain placeholders or placeholder variables and also all their free variables have types that do 
not contain placeholder variables. The types in C and B are constructed from fully-explicit types 
(because PF(r) and PVF(r(FV(M)))) with subterms of M, hence the condition on types. 

Lemma 8.10 If A wa B ^ * and PVF(A) and PVF(5) then 

• ^ = •, and 

. A=ßB 
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The lemma above is proved by induction on the structure of the unification judgment. The 
intuition behind it is that if the terms to be unified do not contain placeholder variables then the 
resulting substitution must be empty. In this case the two terms are /^-equivalent. 

Lemma 8.11 // T F C,A &a B =» tf and PF(r), PF{A), PVF(A), PF(5), PVF(£) and for all 
N : A' in C we have PF(N), PVF(N), PF(A'), PVF(A') and PVF(r(FV(iV))) then 

• *P = ■. and 

• A =j B, and 

• F ^ N : A' for all N : A' in C 

The proof of Lemma 8.11 is by induction on the structure of the derivation F F C,A faa B =4- V&. 
When a unification is solved we use Lemma 8.10 to conclude that the resulting substitution is empty 
and that the unified types are /3-equivalent. When a typing constraint is solved then the hypothesis 
provides all the conditions necessary to apply Theorem 8.8 and conclude again that the substitution 
is empty and that the typing constraints are satisfied. 

Lemma 8.12 IfTPM=>(-;C;B) and A =0 B with PF(A) and for all N : A' in C we have 
r F S : A' and PF{A') then F F M : A. 

We prove Lemma 8.12 by induction on the structure of the collection derivation. Again We can- 
not have placeholders and because the typing constraints from C are satisfied we can immediately 
prove the conclusion using the typing rules of LFj. 

8.6    Soundness of LFj typing 

We have proved the correctness of the reconstruction algorithm with respect to the LFj typing 
system. In order to complete the proof of adequacy of the reconstruction algorithm for checking 
proofs we still have to prove Theorem 5.1, that is the soundness of LFj typing with respect to LF 
typing. We do this in the rest of this section. For clarity we restate the theorem here. 

Theorem 8.13 Soundness of LFj typing // T F M : A and PF(r), PF{A), then there exists 
M' such that M /*M' and F F M' : A. 

Proof: The proof is by induction on the structure of the derivation V : F F M : A. The case of a 
constant or a variable is trivial.  In the case of the /3-equivalence rule we use the rule hypothesis 
PF(A) to apply the induction hypothesis and then we use the LF /?-equivalence rule. 
In the case of an abstraction again we use the theorem hypothesis   PF(Hx: A.B) to ensure that 
we can apply the induction hypothesis. The remaining cases deal with the application to a term or 
a placeholder. 
Case: 

FfM-.Hx-.A.B        FfN:A        PF(A) 

F F M * : [N/x]B 

Because of the rule hypothesis PF(^4) we can apply the induction hypothesis on T>2 and deduce 
that there exists JV' such that TV /• N' and F F N' : A. 
From the theorem hypothesis we have that PF([N/x]B). From here we infer that PF(Z?) and then 
that PF(Ila:: AJE?). This justifies applying the induction hypothesis to T>\ and inferring that there 
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exists M' such that M /* M' and T F M' : ILr: A.B. Now using the LF application rule we infer 
that r F M' N' : [N'/x]B. It is evident that M * /* M' N'. What remains to be proved is that 
[N'/x]B =ß [N/x]B. This is that case if x £ FV(-B). Otherwise, we know from the hypothesis that 
PF{[N/x]B) which implies that PF(iV) and then that JV = N'. 

The case when the last rule in V is an application to a term is very similar to the case presented 
above. 

D 

8.7    Auxiliary Lemmas 

The following lemmas are results that were used in the correctness proof of the type reconstruction 
algorithm. Most of them are trivial to prove and therefore we omit their proof. Recall also that we 
made the convention that all the types involved in the statements of the theorems and lemmas are 
placeholder-free. 

The first lemma establishes some canonical forms of types in LFj judgments. 

Lemma 8.14 IfT f M : A then the following are true: 

• If M = x then T(x) =ß A 

• If M = c then E(c) =ß A 

• IfM = MiM2 then T f Mi : Ux:Ai.A2 and T t1 M2 : A\ and [M2/x]A2 =0 A 

• If M = Xx.N then A = Ux:Ai.A2 andT,x : Ai f M : A2. 

Next we have a lemma saying that /3-reduction "preserves" the type of the expression. Because 
of the dependent types the resulting type is actually obtained by substitution itself. 

Lemma 8.15 IfT f Xx.M :Ux:A.B andT f N : A with PF(iV) then T f [N/x]M : [N/x]B. 

We continue with a crucial lemma used throughout the proof of correctness. This lemma says 
that if a substitution is well-typed on certain placeholder variables then it preserves the typing 
relation. 

Lemma 8.16 Let D = Dom(*)nFV(M) i/PF(M) and Dom{^) otherwise. 7/PF(*) and^(T) f 
*(«) : *(r(«)) for allueD andifTf M :A then ${T) f *(M) : *(A). 

Proof: (of Lemma 8.16) The proof is by induction on the structure of the derivation V :: T f M : A. 
The case of a constant is trivial because the constant and its type do not change by substitution. 
More interesting cases are when M is a variable or a placeholder variable. In the case of a normal 
variable, or a placeholder variable outside Dom(^>), the conclusion follows immediately from the 
definition of ^(r). In the case of a placeholder variable that is in Domfö) the conclusion follows 
from the hypothesis because that variable is also in FV(M) and therefore in D. 
We consider the other cases below: 
Case: 

Vi 

TfM:A        A=0B        PF(A) 
V = 

T^M :B 

In this case we can apply the induction hypothesis on T>i and infer that \&(r) P- \&(M) : ^(A). 
Note that we have used the hypothesis PF(A) to ensure that our implicit convention about types is 

43 



preserved. By Lemma 8.21 we get that ^(A) =0 ^(B). Because PF(*) and PF(A) we deduce that 
PF(ty(A)). We can therefore use the LFj rule for beta-equivalence and infer that ^(F) f *(M) : 

Case: 

m T,x:A?-M:B 

rF-Aa;.M:IIa;:AS 

The set of placeholder variables D is the same for Xx.M and M. We know that for all u G D we 
have *(r) P- *(w) : ^(F(u)). Because x cannot occur in * we deduce that ^(T,x : A) f ^(u) : 
\&((r, x : A)(u)) for all u £ D. We can therefore apply the induction hypothesis and conclude that 
\I/(r,X.: A) P- \&(M) : ^(B). From here we can use the abstraction rule of LFj and deduce the 
desired conclusion *(r) f V(\x.M) : ^(Ux:A.B). 
Case: 

TfM:Ux:A.B F f N : A        PF{A) 

TfMN: [N/x]B 

We know that PF(M JV) iff PF(M) and PF(iV). This and the fact that the free variables of M and 
iV are among those of M N allow us to use the induction hypothesis both on V\ and V2. Because 
PF(A) and PF(vE') we have that PF(\I/(^4) which can be used together with the induction hypotheses 
to infer the desired conclusion W(r) f ty(M N) : *&([N/x]B). Note that by our implicit convention 
on types we have that PF([N/x]B) which implies that PF(B) and also that PF(iIx:Ai?). 
Case: 

£>i V2 

Tf M:Ux:A.B F f N : A PF(A) 

~ r f- M * : [N/x]B 

Note that in this case we do not have PF(M *) and therefore we must have r t- \l/. We can therefore 
apply the induction hypothesis for the derivation V\ and infer that $(r) f $(M) : Fix :^ {A) .^ (B). 
From the induction hypothesis on T>2 we infer that ^{F) f \P(JV) : ^(A). From here we follow the 
same steps as in the previous case. Note that \1/(M *) = ^>(M) *. 

D 
The Lemma 8.16 is not actually used in that form. All its uses are in the form of two corollaries 

stated below. 

Corollary 8.17 IfT f M : A and F h * with PF(tf) then V(T) f tt(M) : V(A). 

Proof: (of Corollary 8.17) The corollary follows immediately from Lemma 8.16 if we note that 
D C Dom{^) and that T h * implies that for all u G Dom(^) we have *(r) f V(u) : *(r(«)). 

D 

Corollary 8.18 // F f u : A and F f M : A with PF(M) and u <£ FV(M) then Ffu^M. 

Proof: (of Corollary 8.18) Let * = u -f- M. Because PF(M) we can apply Lemma 8.16 with 
D = Dom{^>) n FV(M) = 0 and we infer that *(r) "r *(M) : V(A). But because u 0 FV(M) we 
have that $(M) = M = ^{u). Therefore rh*. 

D 
We continue with two lemmas dealing with typing substitution.   The first is concerned with 

the well-typedness of a composition of two substitutions.   The second one deals with restricted 
substitutions. 
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Lemma 8.19 //ri-f and *(]?) I- $' wii/i PF($) and PF(*') then rh*'o$ and PF(*' o *). 

Proof: It is obvious that PF(\I>' o \I>). To prove that r h f' o f consider a placeholder variable 
u 6 Dom{^' o *). Then either u £ Dom(vl/), in which case ^(Gamma) f ty(u) : #(r(it)) and by 
Lemma 8.16 we get the desired conclusion, or u G Dom($')\Dom(ty), in which case \I/'(\l/(r)) P- 
*'(«) : *'(*(r(u))). 

D 

Lemma 8.20 7/T,A h * anrf Doro(A) C £om(#) then *(I\A) = *(r) = #|£0m(r) (r) anJ 
r I- *|z>om(r)- 

Proof: It is easy to prove that \l/(r, A) = \&(r) using the definition of substitution applied to type 
environments. Also it must be the case that T does not contain any placeholder variable contained 
in A, thus we get *(r) - *|ßom(r) (r). 
For the second part, let u € Dom^) D Dom{T). We have that *(r) f *(«) : \l>(r(u)). Because 
nothing in A can occur in T we conclude that T \- ^\pom(r) • 

D 
The last lemmas required are concerned with /3-equivalence.  Their proof is trivial so we just 

state them here. 

Lemma 8.21 If M ~g N then *(M) =0 *(JV). 

Lemma 8.22 If M =■„ N and M' =ß N' then [M/x]M' =3 [N/x]N'. 
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9    An Optimized Version of Type Reconstruction 

In this section we examine several optimizations to the reconstruction algorithm presented in Sec- 
tion 6. We chose to present these optimizations separately from the main algorithm to simplify the 
presentation of the algorithm and its correctness proof, and also because the behavior and power 
of the reconstruction is not influenced by these optimizations. Their only purpose is to lay the 
grounds for an efficient implementation of the algorithm, which will be discussed in Section 10. 

Because the optimizations presented in this section were not proved correct as part of the main 
correctness theorem we have the obligation of proving their correctness here. However, in order to 
simplify the presentation we are only showing informal correctness arguments. 

We consider two classes of optimizations. The first class consists of signature-independent opti- 
mizations whose focus is to optimize the checking of the side conditions present in the reconstruction 
algorithm. Examples of signature-independent optimizations are the occurs check optimization and 
an optimization of the complicated side condition from the collection rule for explicit parameters. 
We show in Figure IG on page 51 a variant of the reconstruction algorithm that incorporates these 
optimizations. 

The second class of optimizations are dependent on the particular signature that is at the base 
of reconstruction. The reason we are interested in such optimizations is that in all of our current 
experiments we are interested in using the reconstruction as the basis for validating first-order logic 
proofs. In such conditions we can eliminate some of the side-condition checks without compromising 
the correctness of the reconstruction. 

9.1    Optimizing the Occurs Check 

One of the most important features of our reconstruction algorithm is that the reconstructed 
subterms do not have to be typechecked because, by design, the algorithm ensures that they are 
well-typed. This saves a lot of time when validating proofs. 

If we examine the unoptimized algorithm we notice that the basic reconstruction step is a 
placeholder-variable instantiation in the unification judgment. Whenever a new instantiation is 
made, the algorithm scans the reconstructed term to perform the occurs check. This operation is 
less expensive than complete typechecking but still detracts from the performance advantage of the 
reconstruction versus the validation of fully-explicit terms. 

We have discovered that in most of our experiments the occurs check is not necessary. This 
section presents the results of our efforts to isolate as precisely as possible the cases when the 
absence of the occurs check could lead to inconsistencies. The optimization presented in this 
section recovered about 90% of the cost of occurs check in our experiments with proof validation 
for first-order logic. 

The basic idea behind the occurs-check optimization is that most placeholder variables occur 
at most once and in at most one of the terms involved in a unification operation. When such a 
variable is instantiated the occurs check is obviously not necessary. The rest of the section presents 
how we identify the placeholder variables that have this linearity attribute and how we ensure that 
the attribute is preserved as the unification goes along. 

We attach a linearity attribute to each placeholder variable to identify those placeholder vari- 
ables that occur at most once and in at most one of the unified terms. We write u to denote that 
the placeholder variable u is linear and we write un to denote that u is non-linear. We reserve the 
notation u for situations where the linearity attribute of u is not relevant. The purpose of this 
labelling is to be able to isolate the instantiation operations that do not require an occurs check by 
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means of a new instantiation rule: 

v! « M => ul <- M 

The first task is to label the placeholder variables as they are introduced in the collection rule 
for implicit application. In order to determine the labelling we define the judgment linear(x, TLxi: 
A\....Hxn : An.An+i) to denote that the variable x occurs at most once in any A\ component of 
the type. This notion is formalized below using the notation x 6<i FV(^4) to denote that x has at 
most one free occurrence in A. 

linear(x,B) x e<i FV(A)       x e<i FV(A) 
linear (x,Hy:A.B) linear(x,A) 

The variable labelling is done using an additional modified version of the collection rule which 
labels linear placeholder variables: 

r F M =► (A ; C ; Ux: A.B) linear(x, B) 

r F M *^(A,ul :A-C- [ul/x]B) 

In most cases the linearity check has a small run-time cost. This is because whenever the head 
of M is a constant the linearity predicate can be computed statically and cached in the signature. 
For example if the head of M is the constant and_i  of type 

Ihci :pred ..ILz^pred ..Ila^ipf X1..IIX4 :pf X2..pf (and x\ X2) 

the all the variables introduced in the collection for M are linear. However, if the head is eq_id of 
type 

ILri:exp ..pf (= x\ x\) 

the variable x\ is not linear because it occurs twice in the same atomic component of the type. If 
the head of M is a variable we can simply use the usual non-linear collection rule and avoid the 
check. Note that we do not jeopardize the correctness of the algorithm by having too few linearity 
labels. 

We can state the linearity property in terms of the logic inference rules that the constants in S 
represent. A logic variable is linear in an inference rule if it appears at most once in the conclusion 
and at most once in each of the hypotheses of the inference rule. 

Just identifying the linear placeholder variables is not sufficient. In order to motivate the other 
changes to the reconstruction rules we first state our goals in the form of a list of invariants that 
we want to preserve throughout reconstruction. These invariants also serve as the basis for the 
informal correctness arguments, and can be viewed as informal statements of a series of correctness 
theorems. 

Invariants: 

1. In all judgments we never have simultaneous occurrences of both the linear and the non-linear 
versions of a placeholder variable. That is, the linearity property is attached to a variable and 
not to its occurrences. 

2. Whenever a unification judgment is invoked all linear variables occur at most once in at most 
one of the terms to be unified. 
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3. All substitutions have the property that non-linear variables are instantiated to terms contain- 
ing only non-linear variables. 

It is clear that if the above invariants hold then it is safe to omit the occurs check when a linear 
variable is unified. Next we show the modifications that are required in order to preserve these 
invariants. 

Substitutions are produced by the instantiation rule and are then transformed using compo- 
sition and restriction. It is easy to see that substitution composition and restriction preserve the 
substitution invariant. The only remaining fact to check about substitutions is that the invariant 
holds on a newly produced instantiations. Substitutions introduced by the linear instantiation rule 
are not a problem. However, in order to establish the invariant in the case of a non-linear in- 
stantiation we must change the instantiation rule to instantiate non-linear variables only to terms 
containing non-linear variables. 

For this purpose we define the operation Nonlinear(M) =4> $ to produce a substitution con- 
taining only mappings of the form ul <- un for all linear variables ul occurring in M. The modified 
version of the non-linear instantiation rule is: 

u & FV(M) Nonlinear (M) =4> * v —u_inst 
un « M => * o [«" <- M] 

Similarly we need to modify the /3-reduction unification rule to prevent linear variables to be 
duplicated by /3-reduction. 

Nonlinear(N) => tf [V{N)/x)M taa M' => *' 
 au_beta 

(Xx.M) N^aM' => *' o * 

Note that whenever we change the linearity attribute of a variable, the fact is recorded in the 
substitution produced by the Nonlinear function so that we can do the change globally. This 
ensures that the linearity attribute is global. 

The most important invariant from the list above is the one about unification. We can show that 
this invariant is preserved throughout unification. The only difficult case here is the application 
case. We can prove the invariant preservation in this case if we observe the following properties of 
substitutions produced by unification: 

• If M « N =>■ \I/ then ^ can contain only variables that occur in M or N. 

• If M ss N => \l/ then any linear variable appears at most once in at most one of the instanti- 
ations from \I/. 

The most difficult property to show is that when unification is invoked from the constraint 
solving judgment the unification invariant holds. In order to do this we must observe that the 
following invariants hold: 

Invariants: 

4. If M ziN =» * andu1 G Dom(V) f~l FV(M) and vl G FV(tf («')) then vl G FV(iV). 

5. No placeholder variable that appears in T(x) for some x, is instantiated until x : A is retracted 
from T. 
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6.  Whenever V f M : A =>■ \I> is invoked, all linear variables occur at most once in A. Also, the 
resulting substitution does not contain instantiations ^(u) that contain linear variables. 

The first invariant above is shown by induction on the unification judgment using the fact that 
linear variables appear at most once in at most one side of the unification. The second invariant 
is motivated by the fact that only the empty substitution can be the result of type-checking an 
abstraction. 

In order to show the last invariant we note that type-checking judgments are only invoked from 
the constraint solving judgment, which in turn is invoked after a constraint list C was produced 
by the judgment T f M =>■ (A ; C ; B). If N' : A1 is a component of a constraint list C we notice 
that A1 has the linearity attribute and furthermore it only contains linear variables from the newly 
introduced set A.1 Also, if A psa B is a unification constraint in C we notice that the linearity 
invariant is established initially and furthermore the linear variables in A are not in A, while all 
the linear variables in B are in A. 

The last proof obligation is to show that while doing constraint solving followed by the transfor- 
mation of the remaining list with the intermediate substitution, the linearity invariant is preserved. 
This can be done separately for the cases when the first goal solved is a unification goal or a typing 
goal. For this purpose we use the substitution invariants mentioned above. 

As shown in Section 11, this occurs-check optimization is very effective when checking proofs 
in first-order logics. This is because all the applications have a constant head and we do not loose 
anything by not optimizing the case of variable heads. Another and a more important reason is 
that the vast majority of inference rule in a typical logic are completely linear. For example all the 
inference rule of first-order predicate logic are linear. In our experiments we only use non-linear 
rules that deal with arithmetic and even in that case only a part of the variables are non-linear. 
We have measured reductions of up to 90% in the cost of the "occurs" check when checking proofs 
of first-order logic. This translated to reductions of up to 60% in the total cost of proof validation. 
These numbers were measured for an implementation that contains other optimizations, some of 
which make the cost of computing the Nonlinear function negligible. 

9.2    Optimizing the Side Conditions 

The largest opportunity for optimization in the reconstruction algorithm is given by the side condi- 
tions. In the previous section we presented such an optimization for the occurs-check side condition. 
Another side condition that can be optimized is the one in the collection rule for application to an 
explicit term. 

This side condition involves four checks in the worst case: 

x 6 FV(B) D (PF(JV) and PVF(A) and PVF(r(FV(iV)))) 

We note first that the check x G FV(B) can be precomputed in the cases when the head of 
M is a constant in a similar way as we precomputed the linearity predicate for the occurs check 
optimization. 

We focus on the checks on N and we ignore here the check PVF(J4). The basic idea here is 
that N is collected in the typing constraint list and is eventually type-checked. Therefore, instead 
of checking the conditions on JV eagerly at the time of collection, we just mark that they should be 

1Except perhaps some linear variable occurring in some T(x). But we argued before that these are never instan- 
tiated while solving the current constraint list, and therefore we can ignore them here. 
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checked at the time TV is checked. As shown in Section 11, this is an effective optimization because 
delaying the checks has the potential of collapsing multiple checks into a single one. 

Whenever TV is added to the typing constraint list we set a flag marking that when N is 
typechecked we should also verify that it does not contain placeholders and all variables free in 
it have types that do not contain placeholder variables. We call this flag p and we write the new 
reconstruction judgment as T £ M : A =» \F. The flag p can have either the value full, meaning 
that the term M cannot contain placeholders, or implicit otherwise. The initial value of the flag 
is implicit. 

With this extra flag we can delay the side-condition check from the collection rule to when the 
explicit argument is typechecked. The new reconstruction judgments, implementing this optimiza- 
tion and also the occurs-check optimization are shown in Figure 16. 

9.3    Optimizations Specific to First-Order Logics 

The optimization presented in Section 9.2 optimized the checking of a complicated side condition 
from the constraint collecting rule. As a result of this optimization, the side condition was split in 
several parts. Among these the most expensive are the side conditions from the rules cc_x (checking 
that the type of a variable does not contain placeholder variables) and cc_dep (checking that a type 
does not contain placeholder variables). 

In certain situations these residual checks can be omitted altogether. This section shows that 
this is the case if we restrict our attention to checking proofs of first-order logic predicates. 

For the purpose of this section we restrict our attention to reconstruction in the case when the 
signature E is the representation of a first-order logic, using as an example the representation of 
the logic C introduced in Section 2. 

By inspection of the signature S we realize that the only dependent type family is pf : pred —> 
Type. Also by inspecting the predicate constructors we notice that only objects of type exp, pred 
and exp —> pred can occur in normal-form predicates. From this we conclude that the only type 
dependency in S is on objects of type pred, exp and exp —> pred. 

Therefore, in the cc_dep rule because we have x G FV(-B) it must be that A is one of the above 
mentioned types, none of which can contain placeholder variables. Therefore we can omit the check 
PVF(4). 

Similarly we infer that any object iV of type exp, pred or exp —> pred can only contain variables 
of type exp. We deduce therefore that the condition p = full D PVF(r(a;)) is always satisfied in 
the rule cc_x and can be omitted. 

The reasoning behind these optimizations depends only on the syntactic structure of expressions 
and predicates and on the fact that the only dependent type is that of proofs. It is reasonable to 
expect that these properties hold for a very large class of first-order logics, and therefore the 
optimizations presented here are not specific to C but can be applied to many other first-order 
logics. 
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Main Reconstruction : 

T,x:A%M:B 
Tt\x.M :Ux:A.B 

-tp_lam 

T%M=>(A;C;B) r,AFC,i«ttß^$ Dom(A) C Dom{<$>) M is not an 
 j 1 p -äpp 

r F, M : A => *|nom(r) abstraction 

Constraint Collection: 

p = full D PVF(r») 

rfc^(.;'iS(c)) rfa;^(.;-:r(:/:)) 

r^M=>(A;C;ILc:A5) p 7^ full 
cc_p 

T%M*^(A,un:A;C; [un/x]B) 

r £ M =» (A ; C ; ILc: A.B) linear(x, B) p ^ full 
cc_linp 

r F, M * => (A, ul : A ; C ; [u'/z].B) 

PVFM) 
cc_dep 

r£M=>(A;C;ILr:AB) g € FV(ff) PVF(4) 
r F, M JV =► (A ; C, N :full A ; [JV/ar]B) 

rf M=>(A;C;nx:AB) x0FV(£) 
cc_indep 

T%M N=> {A;C,N :pA;B) 

Constraint Solving: 

n        TfC1,C2,C3^^ 
-cs_0 ^ lT -,—^—7: —cs_ord 

r F M : A =*• * *(r) F tt(C) =► *' j4 ?sa B => * *(r) F *(C) =4> *' 
«-tP     Ti <L n  A ^   D ^ ,T,/ , ,T, cs_unif 

j4tom«c Unification: 

M&aM' ^ * *(JV) « tf (W) =► *' 
au-c    a «„ x =i> ■au-*     aJ AT-,   ,w »r>^ .T./-.T, au_app 

CK,ac=> ■ "■"■-*-    i««^' "-"■-"■ M iV Ri„ M' iV' =^ *' o * a 

Normal Unification 

M^M' =>j , an M ~a M' =» $ „ 
T7 u_lam       —— Tw ^—u_at 

Xx.M « Az.M' => • M « M' => * 

Nonlinear(Ni) =» ^ [ttnW/an]... [^(JV^/a^M ^Q M' =» $' 
(Aari.... \xn.M) Nx... Nn «a M' => *' o *„ o ... o $: 

u_beta 

it £ FV(M)         Nonlinear (M) =>• * 
u_linst         s 7T T—r-n TTT u-inst 

u'» Af => u'<-Af  " unttM^^o[un <-M] 

Figure 16: The optimized type reconstruction algorithm 
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10    The Implementation of Type Reconstruction 

In this section we present the main implementation techniques that we currently use in the imple- 
mentation of the type reconstruction shown in Figure 16 on the previous page. We touch issues 
ranging from efficient implementation of A calculi to memory management and a portable and 
compact binary representation. For each implementation choice we describe how it affects the type 
reconstruction algorithm. 

With the implementation techniques described here we were able to obtain efficient proof check- 
ing and maintain the size of the proof representation at reasonable levels, as shown in Section 11. 
However, our efforts in this area were limited and we therefore believe that more can be done 
towards smaller representations and faster proof validation. 

10.1    De Bruijn Notation and Explicit Substitutions 

In the abstract presentation of the type reconstruction algorithm we assumed certain meta- 
properties of variables and substitutions such as term identity modulo renaming of bound vari- 
ables and capture-avoiding substitutions. A concrete implementation must deal with these issues 
explicitly. The essence of our implementation choices is best modeled abstractly by a normal-form 
variant of the ACT calculus with explicit substitutions and De Bruijn indices as presented in [1]. 
However, the presence of type reconstruction makes our implementation more complex than the 
one suggested by [1]. 

For the implementation of bound variables we use De Bruijn[2] indices. In such an imple- 
mentation each bound variable is represented as a positive integer. In this representation the De 
Bruijn index n denotes the variable bound by the nth enclosing A-abstraction. Also, in such a 
representation there are variable names and the abstractions are denoted simply by the symbol A. 

The De Bruijn notation captures the essence of a term without regard to irrelevant details such 
as bound variable names. Thus a-equivalence is obtained directly by representation. For example, 
both Xx.Xy..xy and Xy.Xx.yx have the same De Bruijn representation, namely AA21. 

Although the De Bruijn notation is not easily readable it leads to simple implementations. A 
more serious disadvantage of the De Bruijn notation is that implementing substitution becomes 
more complex. For example in order to perform the substitution [M/x]N it is not sufficient to 
substitute M for x in N. Consider the situation where there are occurrences of x in an abstraction 
contained in N. The correct procedure in this case is to increase by one all De Bruijn indices from 
M. Similar difficulties occur with /?-reduction. 

Another problem that we must face when implementing the type reconstruction is the imple- 
mentation of substitution. We mentioned before the complications due the interaction between sub- 
stitution and bound variables. In addition, the direct implementation of the substitution [M/x]N 
is expensive because it involves copying the term M for each occurrence of x in N and in most 
cases most of the term N must be copied also. This causes a size explosion and excessive memory 
usage unless sophisticated structure-sharing mechanisms are used [20]. 

We chose to perform substitution in a lazy fashion, postponing a substitution until we come 
across a substituted variable. At that point, we lookup the substitution and we continue our current 
operation on the body of the substitution. Such an implementation is modeled very closely by the 
ACT calculus of explicit substitutions [1]. 

Our variant of the ACT calculus is slightly more complicated than that presented in [1] because 
we want it to model closely our implementation of unification.  On the other hand, during type 
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reconstruction all the terms are preserved in normal form and therefore our variant uses only one 
substitution operator. 

We present next the syntax of the ACT calculus and proceed then to show how it is used in the 
implementation of the type reconstruction algorithm. See [1] for formal results about the adequacy 
of the calculus for implementing dependent-typed A calculus. 

At the level of syntax we replace variables with De Bruijn indices, we change the formal of term 
and type abstraction accordingly and we also introduce a distinguished term constant *. Explicit 
substitutions are a sequence of locations whose values are given by a state. As the terminology 
suggests, this indirection is exposed because we desire to model the side-effects of unification. This 
is the main complication added to the traditional ACT calculus. The syntax is summarized in the 
table below: 

Terms M :~ n   \   c   \   *   \   M1 M2   \   AM 
Types A ::= a   \   A M   |   UA.B 
Locations I 
Substitutions s ::= •   \   I • s 
State Ü ::= •   |   £1,1 <- M{s} 

In preparation for the discussion of how the type reconstruction rules are influenced by the 
explicit substitutions we find it useful to give a few concrete implementation details. Note that 
substitutions as defined by the syntax above are just lists. In fact they are implemented as lists. 
Locations are just names (implemented as pointers) for the car fields of lists. The substitution state 
is implemented by the computer memory by storing the corresponding values in the appropriate 
car cells. 

For example, the transition from substitution s in state 0 to substitution I ■ s in state fi, / •<— 
M{s'} is implemented by consing a new list cell to the list s and storing in the car field the values 
M and s'. We note here that each list cell is in fact 3 memory words. Keep in mind also that there 
is a significant amount of sharing among the lists and that changing the contents of a substitution 
location does affect many terms. 

We do not show here the complete description of the reconstruction algorithm in the presence of 
explicit substitutions. Instead we give some general rules that govern the manipulation of explicit 
substitutions and we exemplify them by showing the new version of unification. 

As a general rule, in the new version of the algorithm all types and terms occurring in judgments 
are accompanied by a substitution object that records all delayed substitutions for that particular 
term or type. We write M{s} to denote that the substitution s corresponds to the term M. During 
type reconstruction the pair of a term and substitution is always closed. For example, if the term 
M contains n free variables, then it is always accompanied by a substitution that is at least of 
length n. Then the free variable with index 1 in M refers to the top of the substitution list, index 
2 refers to the second element, and so on. This means that the pair l{/i • s} represents the same 
term as the one bound to l\ in the current state. Similarly the term 2{l\ ■ l2 ■ s} represents the term 
bound to I2 in the current state. 

Another general rule is that all the judgments have a potential side-effect on the substitution 
state. Thus all the judgments are changed to take a state in input (written usually at the left of 
the I- symbol) and return a new state value (written at the right end of the judgment, usually after 
a => symbol). 

As an introduction to explicit substitution in the indirect form, we show how the /3-reduction rule 
would be implemented. For a gentler introduction and formal correctness proofs see [1]. Consider 
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that the current substitution state is Q and the /3-redex is (XM)N accompanied by the substitution 
s. The /3-reduction rule is shown below: 

Ü h- (\M)N{s} -+ß M{1 -s}=>n,l±- N{s} I is new to ft 

This rule is actually very close to the actual implementation. In order to perform /3-reduction we 
cons to s a new list cell and let / be the address of the new car field. Then we store the term TV 
accompanied by its substitution in the car field and return the resulting substitution together with 
M. 

As we can see the immediate cost of performing the /3-reduction is very small. The hidden 
cost of /3-reduction surfaces when, during the processing of the result, we encounter the substituted 
variable, or more precisely its De Bruijn index. At this point we must lookup the substitution paired 
with the term and continue with the processing of the substituted term. As a general rule, this 
lookup operation is performed whenever the term is a variable, possibly multiple times in sequence. 
The following two rules describe this lookup operation as a judgment ft h M{s} = M'{s'} => ft'. 
Ignore for a moment the side-condition on the second lookup rule. 

n h n{s} = M'{S'} =*► ft'       ü(i) # *{•}      ft \- Q(i) = M'{S'} =» ft' 
fthn + l{Z-s} = M'{s'}=^ft' Ü\-l{l-s} = M'{s'}^n' 

Focusing on unification we extend the above equality judgment with one that incorporates a 
notion of weak head reduction. This means that enough ß redices are reduced so that an abstraction 
or an application with the head either a constant or a variable is exposed. The following rule 
describes the weak head reduction. Notice in the second hypothesis an instance of the ß reduction 
rule presented above. 

ft h M^S} = XM[{S[} =» ft'      ft',* +- M2{S} \- M[{I ■ s[} = M'{S'} =» n" ^    fi/ 
fihM! M2{s} = M'{s'} =*► Ü" 

After the unification judgment reduces both terms involved according to the equality relation 
defined above the resulting terms are matched according to the unification relation defined below. 
Consider the case when the resulting terms are both abstractions. 

ft, h «- c{-}, l2 «- c{-} h M{h ■ s} w M'{12 • s'} =*• n1 it and l2 are new to Ü 
Q I- XM{s} « XM'{s'} => 0' c is a new constant 

In this case both abstractions are opened with the bound variable substituted by a newly 
generated constant. This trick helps preserve the invariant that all terms are closed and also 
ensures that, down the road, when we compare two instances of the bound variable, the unification 
succeeds with the constant unification rule. Note that we allocate two new locations to which we 
assign the same value and not just one. This decision is with an eye to the implementation of 
substitutions as lists. In such an implementation we cannot cons the same cell to two different lists. 
Exactly the same procedure is followed whenever an abstraction is opened. 

Next we have the instantiation rule. We ignore here the details of atomic versus normal unifi- 
cation and of the occurs check optimization. 

n h i{i ■ s}» M'{S'} ^n,i^- M'{S'} 
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First note that the instantiation does not work on the term *{•} but on 1{/} where I currently 
has the placeholder value. This is because the essence of the instantiation is to side-effect the 
state by changing the value associate with the location I. In fact this does not explicitly collect a 
substitution \& but immediately performs it on all the terms of the current reconstruction, and all 
this with just a memory store. Note that the occurs check verifies that the term M'{s'} does not 
contain I and therefore the unification does not lead to circularity. 

Finally we have the unification rule for application. 

Q \- M{s} «a M'{s'} =» ft' fl' h N{s} « N{s'} =$► Ü" 
OhM N{s} &a M' N'{s'} => 0" 

We notice here that we do not have to perform the expensive substitutions ty(N) and ty(N') or 
the substitution composition. All these are taken care of in the instantiation rules and are recorder 
in the substitution state. 

This ends our implementation sketch. Even though we only discussed the unification, all the 
other judgments apply exactly the same techniques for manipulating the explicit substitutions. 

10.2 Implementing the Occurs Check Optimization 

The occurs check optimization presented in Section 9 uses the notion of linear placeholder variables 
and the function nonlinear. In the actual implementation the linearity attribute is not attached 
to the placeholder itself but to the location that contains its instantiation. For this purpose we 
extend the syntax of explicit substitutions with the notion of linear and non-linear locations. As 
locations are introduced in the collecting rule they are labelled in a similar way to the placeholder 
variables. 

This setup permits a very efficient implementation of the function Nonlinear used in the instan- 
tiation rule u_inst and in the rule u_beta. Instead of computing the Nonlinear function eagerly 
we just reset the linearity attribute of the variables u in the u_inst rule or x in the uJbeta rule are 
non-linear. 

The linearity attribute of a location is used during unification in the following manner. The 
implementation of unification maintains a boolean flag that says whether an occurs check must be 
made when an instantiation is performed. The flag is initially false and is set to true whenever the 
unification unrolls a substitution corresponding to a non-linear location. Finally, an occurs check 
is made for every instantiation that happens when the flag set to true. 

With this implementation, everything that is substituted for a non-linear placeholder variable 
is treated as non-linear, without having to compute the Nonlinear substitution. As an additional 
benefit this implementation indirectly achieves a new occurs check optimization. The first time a 
non-linear location is instantiated no occurs check is made. However if unification ever crosses the 
same location again, it sets the occurs check flag so that all variables that were substituted for the 
non-linear placeholder variable behave as if they were non-linear. 

Thus explicit substitutions not only help amortize the cost of performing substitutions but prove 
to be excellent vehicles for implementing the occurs check optimization. 

10.3 Memory Management 

One of the main advantages of using explicit substitutions is that the memory footprint of the 
reconstruction algorithm is very small. The only memory allocation required is for the substitution 
lists. In our implementation this amounts to 3 words for each substitution performed. 
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Moreover if no instantiation is performed while checking a subterm then the only modification 
to the state is allocation and the entire memory allocated for checking that subterm can be deal- 
located. In such a situation the memory usage follows a stack pattern. To exploit this pattern our 
implementation contains a stack-based memory allocator. Whenever we start processing a subterm 
we place a marker on the allocator's stack. When we are done with that subterm we deallocate at 
once all the memory used while checking the current subterm. This implementation achieves very 
fast memory allocation and deallocation and also has good cache locality. 

However, if we are doing reconstruction and not just checking fully-explicit terms then there can 
be side-effects to the state. Because instantiations create sharing relationships between substitution 
locations it is not correct in general to deallocate all the memory used while processing a subterm. 

In order to identify the situations when we can still safely deallocate memory the implementation 
of unification, goal solving and type checking keep track of how many distinct placeholder variables 
are in the type environment T and in the type A to be verified. The counter is incremented with 
each placeholder variable introduced. The counter is decremented with each instantiation. Note 
that it is not possible for two distinct instantiations to instantiate the same placeholder variable. 
Using this simple counter we can conservatively detect the situations when no instantiation will 
happen during the processing of a subterm because there are no placeholder variables. In these 
situations we deallocate memory. 

This memory optimization is fairly conservative because it fails to deallocate when there are 
placeholder variables but none is instantiated. In these situations the memory deallocation is 
delayed until all the current placeholders are instantiated. This eventually happens because at 
the top level there are no placeholders. Even such a conservative implementation performs well in 
practice as shown in Section 11. 

10.4    The Flat Binary Representation 

The last implementation detail that we present here is the actual representation of the syntax of 
LF terms and types. There are four main classes of terms: variables, constants, applications and 
abstractions. For the purpose of representation we ignore the difference between a terms and types. 

The basic representation cell is 32 bits and has the following bit structure: 

LENGTH DATA TAO 

Figure 17: The basic representation cell. 

The tag field distinguishes between a variable, a constant, an application or an abstraction. All 
the 4 tag values are odd because we reserve cells with even values to represent pointers to other 
representation cells. 

In the case of a variable the data portion contains the De Bruijn index of the variable. In 
the case of a constant the data consists of an index into the signature table. The length field for 
variables and for constants is always 4 because they occupy only one cell. 

An application MQ M\... Mn is represented as a representation cell with an application tag, 
the data value equal to n + 1 (to the number of terms in the application) and followed by the 
representations of Mi for i = 0,..., n. The length field for the application is equal to the number of 
bytes used to represent the entire application term including its subterms. This value is redundant 
but it is used to speed up the breadth-first scanning of terms. 
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An abstraction Xx\: A\.Xx2 : A2 Xxn : An.M is represented as a representation cell with an 
abstraction tag, the data field equal to n + 1 and the length field equal to the length of the entire 
abstraction. This cell is followed in order by the representations of Ai for i = 1,..., n and then by 
the representation of M. 

For example, we show in Figure 18 the actual representation of the term c\ c<i {Xx-.a.c^ x). 

32 3 
8- 0* < 4 ci d| 4 C2 

H 20 2 
C/3 

< 4 a  |b 12 2 ||     4 C3 B 4 1 5g > 

Figure 18: The flat representation of the term M — c\ C2 {Xxia.cs x). The labels c% and a stand 
for integer indices into the signature table. 

The main characteristic of this representation is that it avoids the use of pointers. For this 
reason the representation is compact and has good spatial locality of reference. Most of the time 
the terms are scanned depth-first exactly in the order they are laid out in memory . In the rare 
cases when this does not happen the length field allows for efficient skipping of subterms. 

Due to the flatness of representation it is not possible to share subterms, and thus a size 
explosion occurs if a subterm has many instances in the representation. This situation does not 
occur often in our experiments, mainly because we do not perform substitution eagerly. However, 
there is one proviso to the representation rules that allow for sharing. If the low-order bit of the 
tag is zero, the the content of the representation cell is a pointer to a subterm. For this reason we 
select odd values for the variable, constant, application and abstraction tags and we reserve the 
even value to signal indirection. 

The binary representation can be made even smaller because most of the time the data field 
uses significantly less than 13 bits, and also because the length field is redundant. However, we 
keep the representation cells 32-bit long because we occasionally want to fit machine pointers in 
them and also due to alignment constraints on the physical machines we use. 

However, these justification do not apply to an external representation of LF terms, on the file 
system or in the network for example. The external representation is very similar to the internal 
representation with the difference that the cells do not contain a length field and are only 16-bit 
long. In the external representation the indirection pointers are replaced with even indices into an 
indirection table that accompanies the LF term. The length field is easily re-generated when the 
external representation is converted to the internal form. 
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11    Performance Measurements 

In this section we compare the implicit LF representations obtained using the three erasure algo- 
rithms presented in Section 7 among themselves and with the fully-explicit representation. The 
parameters that we measure for each representation are the size, the reconstruction time and 
the dynamically allocated memory required for reconstruction. Then, we conclude the performance 
analysis with the presentation of the benefits gained using the optimizations presented in Section 9. 

The data set used for the measurements presented in this report is obtained from our case 
studies of Proof-Carrying Code (PCC) [12]. PCC is a technique that a server can use to ensure 
with absolute certainty that the code provided by an untrusted client is safe to run, for a previously 
defined notion of safety The idea behind PCC is that the client provides, together with the code, 
the LF representation of a formal proof of safety. In the context of PCC it is important for the 
proof representations to be small because they accompany the code and it is also important for the 
reconstruction to be fast because it is executed by the server in the critical path. 

We extracted the PCC safety proof for 32 experimental programs written in the DEC Alpha 
assembly language. These programs include several variants of network packet filters [14], several 
variants of the IP checksum routine [13] and other PCC experiments presented in [13]. The sizes 
of these programs range from 10 to 50 assembly language instructions. In all the experiments 
considered in this report the LF objects to be reconstructed are implicit representations of proofs 
in first-order logics similar to the logic £ presented in Section 2. 

For each of the 32 proofs we considered four representations. The basic representation is the 
fully-explicit one. We conjecture that the performance of the type-reconstruction algorithm on 
explicit representations is a good estimate of the cost of LF type-checking because there is a close 
similarity between the number and the nature of the operations performed in both cases. The 
other three representations that we consider are those obtained through the local, one-bit global 
and global erasures from the explicit representations. 

All the size measurements are of the binary representation of LF terms, as presented in Sec- 
tion 10.4. Recall that all LF constants are represented as indices into the signature table. We 
include in the size of the representation the size of the linkage information, which is a list of the 
constant names in the signature. The linkage table is only required if there is no preestablished 
order of individual constants in the signature. If we omit the size of the linkage table, the results 
presented in the rest of this section are improved. 

The size of the explicit representation serves as the basis of evaluation for the erasure algo- 
rithms. For each of the implicit representations we measure the improvement in the reconstruction 
time and the size of the dynamically allocated memory used during type reconstruction. All the 
measurements were done on a DEC Alpha workstation with a 175-MHz Alpha 21064 processor and 
a 2-Mbytes board-level cache. The measurements are performed with a warm cache and we average 
the data over at least consecutive 1000 runs. 

Table 3 shows absolute performance data for the fully-explicit representation and the one-bit 
global representation. We only show in this table only a handful of representative cases. The 
experiment entitled Cap is the resource access service from [14]. The packet filters 3 and 4 are also 
described in [13]. The Ping experiment is the largest PCC experiment to date and involves checking 
both safety and liveness properties of a simple implementation of the ping network protocol. The 
experiment Safe ML is described in [12]. In the rest of this section we shall focus on relative 
performance comparisons. All the reported results are based on 32 experiments that include all 
those described here and others that are similar but generally smaller. 

In order to compute the reduction in the representation size and reconstruction time, we com- 
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Experiment 
Explicit One-bit Global 

Size Rec. Time Rec. Heap Size Rec. Time Rec. Heap 
(bytes) (ms) (bytes) (bytes) (ms) (bytes) 

Cap 3049 7.41 5896 257 1.14 4984 
IP Checksum 23198 56.84 20088 1037 5.77 15432 
Packet Filter 3 15898 36.75 17648 561 2.80 13136 
Packet Filter 4 14502 33.57 15016 547 2.60 10216 
Ping- 181527 458.27 53376 4149 24.86 38928 
Safe ML 13758 34.72 12152 707 4.30 11144 

Table 3: Absolute performance data for the type reconstruction of fully-explicit and one-bit global 
representations. 

pule t he geometric means of corresponding ratios. The resulting values are shown in Table 4. Based 
on these results we conclude that all implicit representations achieve significant reductions in the 
size of representation and the validation time. The memory required for validation is reduced by 
only approximately 35%. Such a small improvement in memory usage is motivated by the fact that 
t lie more implicit the representation, the more memory is required for holding the reconstructed 
subterins. and the fewer opportunities to deallocate memory eagerly (see the description of the 
memory optimization in Section 9). 

The major surprise revealed by the data from Table 4 is that the global representation algorithm 
is not significantly more effective than the one-bit global algorithm in terms of representation size 
and reconstruction time. In addition, it increases slightly the amount of memory required for 
reconstruction. The main reason for such a dismal improvement over the one-bit algorithm is that 
the one-bit erasure succeeds in removing the vast majority of redundant subterms and achieves a 
near optimal representation, leaving very little room for improvement. Interestingly, the one-bit 
global erasure algorithm achieved optimal results on the largest experiments we performed. These 
observation, combined with the substantial complexity of the global erasure algorithm, lead to the 
conclusion that the global erasure algorithm is not of practical value for the implicit representation 
of first-order proofs. 

Ratio Local One-bit Global 
Representation size 
Reconstruction time 
Reconstruction space 

5.08 
3.71 
1.31 

15.42 
7.71 
1.36 

15.83 
7.81 
1.32 

Table 4: The reduction in representation size, reconstruction time and space due to the implicit 
representation. 

While the ratios shown in Table 4 clearly demonstrate the effectiveness of the implicit repre- 
sentations for first-order logic proofs, they do not show the whole power of reconstruction. We 
observed that the improvements due to implicit representations are larger in relative terms as the 
proofs get larger. This suggests that a simple ratio does not convey the true performance benefit 
to be gained through reconstruction. 
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Figure 19:  The representation-size reduction as a function of the explicit representation on loga- 
rithmic scale. 
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Figure 20: The reconstruction-time reduction as a function of the explicit reconstruction on loga- 
rithmic scale. 
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In Figure 19 and 20 we plot on logarithmic scale the improvement ratios of the representation 
size and the validation time as a function of the explicit representation size and reconstruction 
time, for the 32 experiments considered. These figures show that, at least for the one-bit global 
representation, the improvements are superscalar. We have computed logarithmic correlations of 
the implicit and explicit values of the representation size and the reconstruction time. The results 
suggest that, for the local erasure, the improvements are scalar and are accurately described by the 
simple ratios shown in Table 4. For the one-bit global erasure, however, we have found that the 
following formulas are more accurate for the range of term sizes covered by our experiments: 

One-bit size = 2.03 * Explicit size{ ,0.60 with a correlation of 0.94 

with a correlation of 0.95 One-bit time = 1.81 * Explicit time0'72 

These formulas suggest that as the size of the problem increases, the improvement ratio of the 
one-bit global representation compared to the fully-explicit representation also increases. More 
experiments with large LF terms are required to substantiate these findings. 

11.1    Effectiveness of Optimizations 

The results of the previous section are obtained with all the optimizations presented in Section 9. 
In the rest of this section we show our findings regarding the effectiveness of these optimizations. To 
evaluate an optimization we measure the reconstruction time and space with only that optimization 
disabled and then with all the optimizations enabled, for the four LF representations. We then 
compute the geometric mean, over the 32 experiments, of the ratio between the optimal value of 
the performance parameter and the value with the optimization disabled. We report, in Table 5 
and 6, the result of subtracting from 100% the mean ratio for the reconstruction time and space 
respectively. A value of 10% in these tables means that, on the average, the optimization reduces 
the reconstruction time or space to 90% of the original value. 

Optimization Explicit Local One-bit Global 
Occurs Check 0.07% 24.23% 43.75% 43.88% 
Memory Management -1.46% -0.59% -0.44% 0.11% 
Side-Condition 13.62% 8.90% 1.73% 1.96% 
First-Order Logic 8.51% 5.40% 0.94% 1.72% 
All 15.91% 30.49% 44.16% 44.71% 

Table 5: The effect of the optimizations on the reconstruction time. Each value is obtained by 
subtracting from 100% the geometric mean over 32 experiments of the ratio between the optimal 
time and the time with one optimization disabled. 

We notice that the occurs check optimization has a major effect on the reconstruction time and 
it is more effective for the representation with more implicit subterms. This is because the occurs 
check is only required for the instantiation of implicit subterms. The occurs check optimization has 
also a minor improvement on the memory used during reconstruction, because it avoids memory 
allocation that is normally part of the occurs check. 

The occurs check is one of the most expensive operations performed during type reconstruction. 
To assess the cost of occurs check for type reconstruction we measured the reconstruction time for 
each of the four LF representations in three separate circumstances: with the occurs check turned 
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Optimization Explicit Local One-bit Global 
Occurs Check 0.00% 0.64% 0.77% 0.77% 
Memory Management 88.92% 66.91% 35.56% 35.86% 
Side-Condition 3.96% 0.00% 0.00% 0.00% 
First-Order Logic 0.00% 0.00% 0.00% 0.00% 
All 88.99% 67.12% 36.04% 35.35% 

Table 6: The effect of the optimizations on the reconstruction space. Each value is obtained by 
subtracting from 100% the geometric mean over 32 experiments of the ratio between the optimal 
space and the space with one optimization disabled. 

off2, with it turned always on and with the optimized occurs check presented in Section 9. In 
Table 7 we show for each representation the average percentage of time spent doing the occurs 
check. We see that, in the unoptimized case, the reconstruction algorithm spends about 45% of 
the time performing the occurs check. However, with the simple linearity optimization the cost of 
the occurs check is reduced to less than 2%, making further optimization uninteresting. 

Parameter Explicit Local One-bit Global 
Cost of occurs check 0.09% 24.70% 44.28% 44.67% 
Optimized cost of occurs check 0.02% 0.63% 2.01% 1.40% 

Table 7: The percentage of time spent doing the occurs check, in the unoptimized and optimized 
cases. 

The memory usage optimization has a major effect on the dynamically allocated memory used 
during reconstruction. Recall that memory deallocation can be done only after processing a subterm 
whose type contains no placeholder variables. The more implicit the representation, the more 
placeholder variables are introduced in types. This explains the diminishing effect of the memory 
optimization as the representation becomes more implicit. Even so, the memory usage is reduced 
by approximately 35% in the case of the one-bit global representation. From the viewpoint of the 
reconstruction time, the deallocation operation increases the overall running time by about 0.44% 
for the one-bit global representation. 

The side-condition and the first-order logic optimizations do not bring significant improvements 
in the reconstruction space and time, especially in the case of the implicit representations. Recall 
that the effect of these optimizations is to reduce the cost of checking the side-condition when 
collecting an explicit argument that occurs in the result type. Such arguments are reduced to a 
minimum by the erasure algorithms, eliminating the opportunities for these optimizations. Never- 
theless we consider that these optimizations are useful because they reduce the complexity of the 
reconstruction algorithm. If these optimizations are applied then the reconstruction algorithm does 
not require the procedures PVF(^4) and the more complex PVF(r(FV(iV)). 

In addition of the effect of individual optimizations we also measured their combined effect. For 
this purpose we measured the reconstruction time and space with all the optimizations enabled and 

2This makes reconstruction unsound but is useful as a basis for performance comparisons. 
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Figure 21:   The correlation between the ratio of the optimized reconstruction time to the time 
without the occurs check optimization and the size of the term. 

o 
0.1 

0.01 
100 

+ \+K 

0        % o   + 

o        0 
0 0 0 

0 
0       0, 

"   0 
0 0 

1000 10000 
Representation Size (bytes) 

Explicit   0 
One-bit   + 

100000 

Figure 22: The correlation between the ratio of the optimized reconstruction space to the space 
without the memory optimization and the size of the term. 
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then with them disabled. We notice that with all the optimizations enabled the reconstruction time 
is reduced by 44% on the average and the reconstruction space by 36%. These effects are mostly 
due to the occurs check optimization for the time improvement and the memory optimization for 
the memory usage improvement. 

We noticed that the two most important optimizations, the occurs check and the memory 
optimization, have the tendency to achieve better improvements for larger benchmarks. We plotted 
in Figure 21 the ratio between the optimal reconstruction time to the time with the occurs check 
optimization disabled as a function of the term size, on a logarithmic scale. We notice on the graph 
that, indeed, the occurs check optimization becomes more effective for larger terms. A similar 
and more pronounced correlation exists between the effectiveness of the memory optimization and 
the size of the term, both for the explicit representation and the one-bit global representation 
(Figure 22). This suggests that these optimizations are more effective for larger terms than for 
small ones, although more large experiments are required to ascertain this tendency. 

11.2    Correlation between the Reconstruction Time and Term Size 

Although not directly related to the performance of the erasure algorithms or the effectiveness 
of optimizations, we briefly discuss the relation between the term size and the reconstruction 
time. We plot in Figure 23 this correlation for the explicit representation and the one-bit global 
representation. As can be seen from the figure, in our current experiments involving validation of 
first-order logic proofs, we observe a linear dependency of the reconstruction time with the size of 
the proof representation. This property is true both for the fully-explicit representation and the 
one-bit global implicit representation. 
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Figure 23: The correlation between the representation size and the reconstruction time. 

These results are not possible to generalize to all LF reconstruction tasks because, in the 
worst case, the complexity of the reconstruction is superexponential.   This is hinted by the fact 
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that reconstruction involves /3-reduction which has been shown by Statman to be not elementary 
recursive [19]. 

There are several aspects of using reconstruction for validating first-order logic proofs that 
suggest a better behavior that in the general case. First, the reconstruction algorithm only works 
on canonical terms. Because of substitution in types the reconstruction creates /3-redices. Such 
situations occur, in the context of first-order logic, only when checking instances of rules for universal 
and existential quantification. In these cases, the /3-reduction substitutes a LF term of type exp in 
the body of the redex and therefore, the result cannot contain additional /3-redices. This suggests 
that it is never the case that the /3-reductions are multiplicated in avalanche, and therefore that 
Statman's theorem does not apply in this case. 

However, that the reconstruction effort is linear in the term size remains a surprise that we 
attribute to the fact that our experiments do not make extensive use of quantification. We expect 
similar situations to occur in most practical situations involving PCC and first-order logics. 
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12    Related Work 

We are not the first to address the elimination of redundancy in proof representations. Miller [11] 
approaches the problem by noting that it should be possible to greatly simplify the representation 
of proofs in classical logic by simply recording the substitutions that were performed when building 
the proof instead of recording all the basic proof steps. For this purpose he introduces a new proof 
structure called expansion trees. While expansion tree representation of proofs are indeed compact, 
proof checking is more expensive because some (directed) search still needs to be done. 

The redundancy of representation that we noticed for LF proof representation generates us- 
ability problems for implementations of logic programming languages or proof assistants based on 
LF or related type-systems. Without a form of implicit representation the interaction with these 
systems is very verbose. This led the implementors to consider implicit representations that are 
similar in spirit to the one presented in this report. 

For example, the LEGO [7, 18] and Coq [3] proof assistants implement algorithms for argument 
synthesis and term reconstruction. However, for the task of representing proofs these algorithms are 
both less effective, in the sense that fewer proof subterms can be omitted, and less efficient. They 
are less effective because the only arguments that can be omitted from an application are those 
that can be inferred from other arguments of the same application. This means that an application 
of the term eqld : lie : exp.pf (= e e) must always be explicit even though the argument can 
usually be recovered from the context. These algorithms are also less efficient than ours because 
they implement more general unification algorithms that lift some of the syntactic restrictions that 
we impose. 

The implementation of Elf [17], a logic programming language based on LF, contains a recon- 
struction algorithm that is similar to the one presented here in the sense that missing arguments 
can be recovered also from the context, not only from the other arguments. In fact, the Elf recon- 
struction algorithm is much more powerful than ours because it does not impose any restrictions 
on which types and terms can be missing from the proof. In particular, the whole proof might 
be missing, in which case Elf tries to reconstruct it. To achieve this level of flexibility, Elf type 
reconstruction employs depth-first search and higher-order unification with dependent types [4], 
followed by a constraint solver [16, 15]. An alternative characterization of our proof checking pro- 
cess is as a proof reconstruction instance where enough of the structure of the proof is given to 
avoid the need for search, to reduce higher-order unification to a simple extension of first-order 
unification that respects bound variables and to ensure that all constraints that are generated have 
the simple rigid-rigid or flex-rigid form that can be solved eagerly. These simplifications enable us 
to implement a more efficient reconstruction algorithm. 

Because higher-order unification is undecidable [6] and expensive in general, Miller [10] proposes 
syntactic restrictions so that to ensure that the only unification problems that occur can be solved 
by a simple extension of the first-order unification, as in our case. This approach is the approach 
taken in the language L\. Unfortunately, these restrictions are too strict for our purposes because 
they prevent the free use of higher-order abstract syntax for the representation of predicates and 
proofs. This obstacle can be overcome by implementing term level substitution, but only at the 
expense of more complicated programs and a significant loss in performance [8, 9]. We too recognize 
the benefits of implementing the reconstruction algorithm for a syntactically-restricted subset of 
LF, but we do it in such a way that any (explicit) LF term can still be type-checked in our system. 
This does not limit the available language and programming techniques but might reduce the 
effectiveness of the term compaction algorithms in certain cases. 

Even though there has been a significant amount of work in term reconstruction, we were not 
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able to identify previous work on the dual problem of proof compaction. 

13    Conclusion 

In this report we have presented algorithms for the representation and validation of logical proofs. 
Such techniques are important in situations where logical proofs must be manipulated explicitly 
such as in the case of a theorem prover that generates witnesses of successful derivations, or in the 
case of Proof-Carrying Code. 

The algorithms presented here are derived from the representation and typechecking algorithm 
of the Edinburgh Logical Framework. The major advantages that we achieve with this choice is that 
the algorithms are parameterized by the logic of interest and therefore only one implementation is 
required for a large range of logics. In particular this is the case for all our current PCC experiments, 
ranging from extensions to operating system kernel to extensions to safe programming languages 
to active network components. Another major benefit of LF is that all the complications due to 
parametric and hypothetical proofs are shifted to the framework by using higher-order syntax. 

Even though the pure LF representation is not optimal in terms of size and validation time, our 
implicit representations achieve much improved results. It is an interesting exercise to analyze the 
behavior of the representation and reconstruction algorithms for each rule in a given logic. Such 
an analysis reveals that for all first-order logic constructs, both the implicit representation and 
reconstruction are optimal in the sense that nothing more could be saved by algorithms that are 
specialized to the given logic. This practically says that we achieve performance comparable to 
special purpose algorithms by using general algorithms parameterized by the logic. 

A major contribution of the work presented in this report is a sound reconstruction algorithm 
that is able to reconstruct and typecheck LF terms with missing subterms. The power of the 
algorithm consists on being able to work with implicit representations that are 15 times smaller 
than the original LF representations. A notable feature of the reconstruction algorithm is that the 
reconstruction time is much smaller than the time required for checking the full LF representation, 
in the cases when the type is known to be well-formed. We have measured reductions of about on 
order of magnitude in the typechecking time and of about 35% in the space required for typechecking 
when using explicit substitutions. 

Accompanying the reconstruction algorithm are several algorithms that can be used to produce 
implicit representations of full LF terms. Among these, two are very simple and syntax directed 
and produced near optimal results. 

On the implementation front, we adapted the explicit substitution method to the case of de- 
pendent type reconstruction and we integrated it with an effective occurs-check optimization and a 
memory management optimization. Finally we described a portable binary encoding that attempts 
to further minimize the size of LF terms. 

Although we have made significant progress in the size of the representation and the validation 
effort over pure LF, there is certainly room for further improvement. To discover these opportuni- 
ties, we want to continue experimenting with the representation and reconstruction algorithms for 
more diverse and for larger problems. The purpose of such experiments would be to further substan- 
tiate our expectations that the improvements due to the implicit representations are super-linear 
and that the reconstruction time is linear on the problem size. 

One interesting direction for future work is to experiment with representations of proofs in 
higher-order logics. It is likely that the improvements that we measured for first-order logics do not 
translate directly to higher-order logics, and that even more sophisticated reconstruction algorithms 
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can be devised. It would be interesting to see if the reconstruction time is a linear function of the 
term size also in the case of proofs in higher-order logics. 

We have claimed that the local and the one-bit global erasure algorithms can be at the base of 
efficient representation algorithms that achieve incremental construction of proof representations 
without ever generating the full representation. An interesting experiment would be to instrument 
an actual theorem prover to maintain proof representations of the intermediary results and to 
combine them as it progresses toward the final proof. 
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